ON THE ROLE OF COUPLING COEFFICIENT IN DYNAMIC PROBLEM OF THERMOELASTICITY WITH LOCALIZED INCLUSION
- Authors: Morozov N.F.1,2, Indeitsev D.A.1,2, Muratikov K.L.3, Vavilov D.S.1,4, Kudryavtsev A.A.5
-
Affiliations:
- Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
- St. Petersburg State University
- Ioffe Institute of the Russian Academy of Sciences
- A.F. Mozhaysky Military-Space Academy
- Peter the Great St. Petersburg Polytechnic University
- Issue: Vol 512, No 1 (2023)
- Pages: 63-68
- Section: МЕХАНИКА
- URL: https://kld-journal.fedlab.ru/2686-7400/article/view/651843
- DOI: https://doi.org/10.31857/S2686740023050103
- EDN: https://elibrary.ru/ZOAHEN
- ID: 651843
Cite item
Abstract
In the present paper paper the dynamic problem of thermoelasticity with a localized inclusion in the medium is considered. It is shown that in the resonant regime an important role is played by the coupling coefficient of the temperature and strain fields. The coupling of the problem and the presence of a discrete spectrum lead to the appearance of an additional term in the expression for temperature, which is localized and does not describe the diffusion process.
About the authors
N. F. Morozov
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences; St. Petersburg State University
Author for correspondence.
Email: n.morozov@spbu.ru
Russia, St. Petersburg; Russia, St. Petersburg
D. A. Indeitsev
Email: kudryavtsev_aa@spbstu.ru
K. L. Muratikov
Ioffe Institute of the Russian Academy of Sciences
Email: kudryavtsev_aa@spbstu.ru
Russia, St. Petersburg
D. S. Vavilov
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences; A.F. Mozhaysky Military-Space Academy
Author for correspondence.
Email: londr@yandex.ru
Russia, St. Petersburg; Russia, St. Petersburg
A. A. Kudryavtsev
Peter the Great St. Petersburg Polytechnic University
Author for correspondence.
Email: kudryavtsev_aa@spbstu.ru
Russia, St. Petersburg
References
- Индейцев Д.А., Кузнецов Н.Г., Мотыгин О.В., Мочалова Ю.А. Локализация линейных волн. СПб.: Изд-во С.-Петерб. ун-та, 2007. 342 с.
- Даниловская В.И. Температурные напряжения в упругом полупространстве, возникающие вследствие внезапного нагрева его границы // Прикл. мат. и мех. 1950. Т. 14. № 3. С. 316–318.
- Коваленко А.Д. Термоупругость. Киев: Вища шк., 1975. 216 с.
- Новацкий В. Динамические задачи термоупругости. / М.: Мир, 1970. 254 с.
- Ненахов Е.В., Карташов Э.М. Теория теплового удара в моделях динамической термоупругости // Тепловые процессы в технике. 2019. Т. 11. № 5. С. 230–240.
- Карташов Э.М. Модельные представления теплового удара в динамической термоупругости // Russian Technological Journal. 2020. Т. 8. № 2. С. 85–108.
- Морозов Н.Ф., Индейцев Д.А., Муратиков К.Л., Семенов Б.Н., Вавилов Д.С., Кудрявцев А.А. О влиянии релаксационных процессов на термоакустику материалов // Доклады РАН. Физика, технические науки. 2021. Т. 500. С. 48–52.
- Глазов А.Л., Муратиков К.Л. Акустические колебания алюминиевых мембран при лазерном возбуждении по термоупругому механизму // Письма в Журнал технической физики. 2020. Т. 46. № 10. С. 18–20.
- Карташов Э.М., Партон В.З. Динамическая термоупругость и проблемы термического удара // Итоги науки и техники. Сер. Механика деформируемого твердого тела. 1991. Т. 22. С. 55–127.
Supplementary files
