EXPERIMENTAL STUDY OF THE NON-MODAL PERTURBATION GROWTH MECHANISM IN A LAMINAR SUBMERGED JET

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is known that in wall-bounded flows, along with the growth of instability modes, the non-modal (algebraic) mechanism of linear growth plays an important role. In open flows, including submerged jets, the non-modal growth mechanism is theoretically studied only in the last decade; this mechanism has not yet been identified in experiments. In the present work, experiments on excitation of a non-modal “lift-up” growth mechanism are conducted. Special wavy structures (deflectors) are introduced into a laminar submerged jet of circular cross section, which excites a roller-like transverse movement. The data obtained unambiguously identify the non-modal “lift-up” growth of introduced disturbances. The development of perturbations in the experiment qualitatively corresponds to the theoretically calculated optimal perturbations. The features of the transition to turbulence caused by non-modal growth are considered.

About the authors

D. A. Ashurov

Institute of Mechanics, Lomonosov Moscow State University

Author for correspondence.
Email: ashurovda@my.msu.ru
Russia, Moscow

V. V. Vedeneev

Institute of Mechanics, Lomonosov Moscow State University

Author for correspondence.
Email: vasily@vedeneev.ru
Russia, Moscow

L. R. Gareev

Institute of Mechanics, Lomonosov Moscow State University

Author for correspondence.
Email: gareev.lr@yandex.ru
Russia, Moscow

O. O. Ivanov

Institute of Mechanics, Lomonosov Moscow State University

Author for correspondence.
Email: ivanov@imec.msu.ru
Russia, Moscow

References

  1. Зайко Ю.С., Решмин А.И., Тепловодский С.Х., Чичерина А.Д. Исследование затопленных струй с увеличенной длиной начального ламинарного участка // Изв. РАН. МЖГ. 2018. № 1. С. 97–106.
  2. Zayko J., Teplovodskii S., Chicherina A., Vedeneev V., Reshmin A. Formation of free round jets with long laminar regions at large Reynolds numbers // Phys. Fluids. 2018. V. 30. 043603.
  3. Зайко Ю.С., Гареев Л.Р., Чичерина А.Д., Трифонов В.В., Веденеев В.В., Решмин А.И. Экспериментальное обоснование применимости линейной теории устойчивости к затопленной струе // Доклады РАН. Физика, технические науки. 2021. Т. 497. С. 44–48.
  4. Gareev L.R., Zayko J.S., Chicherina A.D., Trifonov V.V., Reshmin A.I., Vedeneev V.V. Experimental validation of inviscid linear stability theory applied to an axisymmetric jet // J. Fluid Mech. 2022. V. 934. A3.
  5. Farrell B.F., Ioannou P.J. Optimal excitation of three-dimensional perturbations in viscous constant shear flow // Phys. Fluids A. 1993. V. 5. P. 1390–1400.
  6. Andersson P., Berggren M., Henningson D.S. Optimal disturbances and bypass transition in boundary layers // Phys. Fluids. 1999. V. 11. № 1. P. 134–150.
  7. Matsubara M., Alfredsson P. H. Disturbance growth in boundary layers subjected to free-stream turbulence // J. Fluid Mech. 2001. V. 430. P. 149–168.
  8. Boronin S.A., Healey J.J., Sazhin S.S. Non-modal stabillity of round viscous jets // J. Fluid Mech. 2013. V. 716. P. 96–119.
  9. Jimenez-Gonzalez J.I., Brancher P., Martinez-Bazan C. Modal and non-modal evolution of perturbations for parallel round jets // Physics of Fluids. 2015. V. 27. № 4. 044105.
  10. Jimenez-Gonzalez J.I., Brancher P. Transient energy growth of optimal streaks in parallel round jets // Physics of Fluids. 2017. V. 29. № 11. 114101.
  11. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. Spectral Methods. Springer-Verlag Berlin, Heidelberg, 2007. 581 p.

Supplementary files


Copyright (c) 2023 Д.А. Ашуров, В.В. Веденеев, Л.Р. Гареев, О.О. Иванов