DEVELOPMENT TRENDS IN PLASMA AERODYNAMICS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The most promising areas of research in the field of plasma aerodynamics are proposed. On the basis of the presented experimental data obtained recently, the possibilities of using the volumetric force effect on the gas flow in aerodynamic applications, which is realized with the help of near-surface electric discharges, are considered. One of these applications is to increase the length of the laminar section of the boundary layer on the swept wing in order to reduce the aerodynamic drag of the aircraft in the cruise flight mode. The second direction is associated with the control of the three-dimensional separation of the boundary layer on the elements of the mechanization of the swept wing in the take-off and landing modes. And the third direction is the reduction of surface friction in the turbulent boundary layer, which is realized on most of the surface of modern near- and supersonic aircraft. The proposed studies are not only of applied, but also of fundamental importance due to the physical complexity of the studied phenomena.

作者简介

B. Aleshin

Zhukovsky Institute (National Research Center)

编辑信件的主要联系方式.
Email: aleshin@moscowoffice.group
Russia, Moscow

V. Khomich

Institute for Electrophysics and Electric Power of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: khomich@ras.ru
Russia, Saint Petersburg

S. Chernyshev

Central Aerohydrodynamic Institute

编辑信件的主要联系方式.
Email: info@tsagi.ru
Russia, Moscow Region, Zhukovsky

参考

  1. Хомич В.Ю., Ямщиков В.А. Электрогидродинамический поток для активного управления течениями газов // Успехи физических наук. 2017. Т. 187. № 6. С. 653–666. https://doi.org/10.3367/UFNr.2017.01.038047
  2. Moreau E. Airflow control by non-thermal plasma actuators // J. Phys. D: Appl. Phys. 2007. V. 40. P. 605–636. https://doi.org/10.1088/0022-3727/40/3/S01
  3. Cattafesta L.N., Sheplak M. Actuators for active flow control // Annu. Rev. Fluid Mech. 2011. V. 43. P. 247–272. https://doi.org/10.1146/annurev-fluid-122109-160634
  4. Касьянов В.А., Боярский Г.Н., Фридланд В.Я. Экспериментальное исследование влияния электрогидродинамического эффекта на аэродинамические характеристики профиля // Некоторые вопросы аэродинамики и электрогидродинамики: Сб. науч. тр. К.: КИИГА, 1966. Вып. 2.
  5. Roth J.R., Sherman D., Wilkinson S.P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma // AIAA Paper. 1998. № 1998–328. 28 p. https://doi.org/10.2514/6.1998-328
  6. Corke T.C., Post M.L., Orlov D.M. SDBD plasma enhanced aerodynamics: concepts, optimization and applications // Prog. Aerospace Sci. 2007. V. 43. P. 193–217. https://doi.org/10.1016/j.paerosci.2007.06.001
  7. Corke T.C., Enloe C.L., Wilkinson S.P. Dielectric barrier discharge plasma actuators for flow control // Annu. Rev. Fluid Mech. 2010. V. 42. P. 505–529. https://doi.org/10.1146/annurev-fluid-121108-145550
  8. Wang J.-J., Choi K.-S., Feng L.-H., Jukes T.N., Whalley R.D. Recent developments in DBD plasma flow control // Prog. Aerospace Sci. 2013. V. 62. P. 52–78. https://doi.org/10.1016/j.paerosci.2013.05.003
  9. Kriegseis J., Simon B., Grundmann S. Towards in-flight applications? A review on dielectric barrier discharge-based boundary-layer control // Appl. Mech. Rev. 2016. V. 68. № 2. P. 020802. https://doi.org/10.1115/1.4033570
  10. Yadala S., Hehner M.T., Serpieri J., Benard N., Dörr P.C., Kloker M.J., Kotsonis M. Experimental control of swept-wing transition through base-flow modification by plasma actuators // J. Fluid Mech. 2018. V. 844. R2. 11 p. https://doi.org/10.1017/jfm.2018.268
  11. Benard N., Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control // Exp. Fluids. 2014. V. 55. P. 1846. https://doi.org/10.1007/s00348-014-1846-x
  12. Гамируллин М.Д., Курячий А.П., Литвинов В.М., Чернышев С.Л. Исследование упрощенной схемы набора плазменных актуаторов для управления течением в пограничном слое // Уч. зап. ЦАГИ. 2014. Т. XLV. № 6. С. 28–35.
  13. Мошкунов С.И., Хомич В.Ю. Генераторы высоковольтных импульсов на основе составных твердотельных коммутаторов. М.: Физматлит, 2018. 166 с.
  14. Алешин Б.С., Хомич В.Ю., Чернышев С.Л. Развитие метода силового электродинамического воздействия на пограничный слой для активного управления аэродинамическими течениями // ДАН. 2016. Т. 471. № 6. С. 662–664. https://doi.org/10.7868/S0869565216360081
  15. Khomich V.Yu., Yamshchikov V.A., Chernyshev S.L., Kuryachii A.P. Multi-discharge actuator system for electrogasdynamic flow control // Acta Astronautica. 2021. V. 101. P. 292–300. https://doi.org/10.1016/j.actaastro.2021.01.032
  16. Баранов С.А., Гамируллин М.Д., Киселев А.Ф., Курячий А.П., Сбоев Д.С., Толкачев С.Н., Чернышев С.Л. Ослабление неустойчивости поперечного течения в трехмерном пограничном слое с помощью многоразрядной актуаторной системы // ДАН. 2019. Т. 488. № 2. С. 147–152. https://doi.org/10.31857/S0869-56524882147-152
  17. Baranov S.A., Chernyshev S.L., Khomich V.Yu., Kise-lev A.Ph., Kuryachii A.P., Moshkunov S.I., Rebrov I.E., Sboev D.S., Tolkachev S.N., Yamshchikov V.A. Experimental cross-flow control in a 3D boundary layer by multi-discharge plasma actuators // Aerosp. Sci. Technol. 2021. V. 112. P. 106643. https://doi.org/10.1016/j.ast.2021.106643
  18. Wilkinson S.P. Investigation of an oscillating surface plasma for turbulent drag reduction // AIAA Paper 2003–1023. 2003. 19 p.
  19. Jukes T.N., Choi K.-S., Johnson G.A., Scott S.J. Turbulent drag reduction by surface plasma through spanwise flow oscillation // AIAA Paper 2006-3693, 2006. 14 p. https://doi.org/10.2514/6.2006-3693
  20. Коган М.Н., Литвинов В.М., Пименова Т.А., Успенский А.А. Исследование возможности уменьшения сопротивления турбулентного пограничного слоя при воздействии диэлектрического барьерного разряда // Ученые записки ЦАГИ. 2012. Т. 43. № 5. С. 1–14.
  21. Corke T.C., Thomas F.O. Active and passive turbulent boundary layer drag reduction // AIAA Journal. 2018. V. 56. Issue 10. P. 3835–3847. https://doi.org/10.2514/1.J056949
  22. Duong A.H., Corke T.C., Thomas F.O. Characteristics of drag reduced turbulent boundary layers through pulsed-DC plasma actuation // AIAA Paper 2020-0098, 2020. 32 p.
  23. Orlandi P., Jimenez J. On the generation of turbulent wall friction // Phys. Fluids. 1994. V.6. № 2. P. 634–641.
  24. Nakai S., Nishida H., Oshio Y. Investigation on performance characteristics of dielectric discharge plasma actuator using pulsed-dc waveform // J. Fluid Sci. Tech. 2018. V. 13. No. 3. 13 p. https://doi.org/10.1299/jfst.2018jfst0018
  25. Maslov A., Sidorenko A.A., Zanin B.Yu., Postnikov B.V., Budovsky A.D., Malmuth N.D. Plasma control of flow separation on swept wing at high angles of attack // AIAA 2008-540. 2008. 14 p.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (214KB)
3.

下载 (78KB)
4.

下载 (116KB)

版权所有 © Б.С. Алешин, В.Ю. Хомич, С.Л. Чернышев, 2023