APPROXIMATION AND SMOOTHING OF A FUNCTION BASED ON GODUNOV REGULARIZATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of the ferromagnetic resonance spectra of thin magnetic films made of permalloy Fe30Ni70 with a thickness of 50 nm was studied depending on the conductivity of a 0.25 mm thick silicon substrate. The films were obtained by vacuum magnetron sputtering using a DC magnetron. The spectra were taken on a scanning ferromagnetic resonance spectrometer at a frequency of 3.123 GHz with a measurement locality of ~ 1.0 mm2, determined by the area of the hole in the measuring head. It was found that in a certain range of substrate conductivity, the spectra taken when the sample was positioned with the film facing the measuring hole are inverted when the free side of the substrate faces the measuring hole. The results of the electrodynamic analysis of the one-dimensional model, reflecting the conditions of the experiment, are in qualitative agreement with the measurement results.

About the authors

B. A Belyaev

Reshetnev Siberian State University of Science and Technology; Siberian Federal University

Email: belyaev@iph.krasn.ru
Krasnoyarsk, Russia

V. V Tyurnev

Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia

G. V Skomorokhov

Siberian Federal University; Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia

A. A Gorchakovsky

Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia

I. V Podshivalov

Siberian Federal University; Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia

References

  1. Суху Р. Магнитные тонкие пленки. М.: Мир, 1967. 422 с.
  2. Саланский Н.М., Ерухимов М.Ш. Физические свойства и применение магнитных пленок. Новосибирск: Наука, 1975. 219 с.
  3. Barmak K., Coffey K. Metallic films for electronic, optical and magnetic applications: structure, processing and properties. Oxford: Woodhead Publ., 2014. 634 p.
  4. Belyaev B.A., Afonin A.O., Ugrymov A.V. et al. // Rev. Sci. Instrum. 2020. V. 91. 114705.
  5. Lagarkov A.N., Rozanov K.N. // J. Magn. Magn. Mater. 2009. V. 321. 2082.
  6. Camley R.E., Celinski Z., Fal T. et al. // J. Magn. Magn. Mater. 2009. V. 321. 2048.
  7. Бабицкий А.Н., Беляев Б.А., Скоморохов Г.В. и др. // Письма в ЖТФ. 2015. Т. 41. С. 36.
  8. Бабицкий А.Н., Беляев Б.А., Боев Н.М. и др. // ПТЭ. 2016. Т. 3. С. 96.
  9. Melnikov G.Yu., Vazhenina I.G., Iskhakov R.S. et al. // Sensors. 2023. V. 23. 6165.
  10. Shinkai M., Ito A. // Adv. Biochem. Engin. / Biotechnol. 2004. V. 91. 191.
  11. Yang X., Shao G., Zhang Ya. et al. // Frontiers in Physiology. 2022. V. 13. 898426.
  12. Guo T., Lin M., Huang J. et al. // J. Nanomaterials. 2018. ID 7805147. 8 p.
  13. Barrera G., Allia P., Tiberto P. // Nanoscale Adv. 2023. V. 5. 4080.
  14. Кокшарова Ю.А., Губине С.П., Таранов И.В. и др. // РЭ. 2022. Т. 67. С. 99.
  15. Haschke M., Flock J., Haller M. X-ray Fluorescence Spectroscopy for Laboratory Applications. Weinheim: Wiley-VCH, 2021. 464p.
  16. Беляев Б.А., Лексиков А.А., Макиевский И.Я. и др. // ПТЭ. 1997. Т. 3. С. 106.
  17. Belyaev B.A., Izotov A.V., Leksikov A.A. // IEEE Sensors J. 2005. V. 5. 260.
  18. Беляев Б.А., Боев Н.М., Горчаковский А.А. и др. // ПТЭ. 2021. Т. 2. С. 107.
  19. Беляев Б.А., Изотов А.В., Кипарисов С.Я. и др. // ФТТ. 2008. Т. 50. С. 650.
  20. Изотов А.В., Беляев Б.А. Свид. о гос. рег. прогр. для ЭВМ № 2009616881. 2009.
  21. Гупта К., Гардж Р., Чадха Р. Машинное проектирование СВЧ устройств. M.: Радио и связь, 1987.
  22. Тюрнев В.В. Прямой вывод и уточнение обобщенных формул Кона-Маттея для коэффициентов связи резонаторов в фильтре сверхвысоких частот // РЭ. 2008. Т. 53. № 5. С. 858.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences