Development generation and application of body-centered electric discharge concepts for ignition and flame holding of the fuel combustion in supersonic flows

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is suggested the concepts of the longitudinal electric not binding to walls of a camera discharge creation in the supersonic flows and its application for ignition and flame holding of the fuel combustion.

Full Text

Restricted Access

About the authors

S. L. Chernyshev

Central Aerohydrodynamic Institute named after Prof. N.E. Zukovsky

Email: sergey.inshakov@tsagi.ru

Academician of the RAS

Russian Federation, Zhukovsky, Moscow Region

V. V. Ivanov

Central Aerohydrodynamic Institute named after Prof. N.E. Zukovsky

Email: sergey.inshakov@tsagi.ru
Russian Federation, Zhukovsky, Moscow Region

S. I. Inshakov

Central Aerohydrodynamic Institute named after Prof. N.E. Zukovsky; Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: sergey.inshakov@tsagi.ru
Russian Federation, Zhukovsky, Moscow Region; Moscow

V. V. Skvortsov

Central Aerohydrodynamic Institute named after Prof. N.E. Zukovsky

Email: vlaskvortsov@rambler.ru
Russian Federation, Zhukovsky, Moscow Region

V. A. Talyzin

Central Aerohydrodynamic Institute named after Prof. N.E. Zukovsky

Email: sergey.inshakov@tsagi.ru
Russian Federation, Zhukovsky, Moscow Region

A. A. Uspensky

Central Aerohydrodynamic Institute named after Prof. N.E. Zukovsky

Email: sergey.inshakov@tsagi.ru
Russian Federation, Zhukovsky, Moscow Region

V. A. Shakhatov

Central Aerohydrodynamic Institute named after Prof. N.E. Zukovsky

Email: sergey.inshakov@tsagi.ru
Russian Federation, Zhukovsky, Moscow Region

References

  1. Sato Y., Sayama M., Katsura O., Masuya G., Komuro T., Kudou K., Murakami A., Tani K., Wakamatsu Y., Kanda T., Chinzei N. Effectiveness of plasma torches for ignition and flameholding in scramjet // J. Propulsion and Power. 1992. V. 8. № 4. P. 883–889. https://doi.org/10.2514/3.23565
  2. Jacobson L.S., Gallimore S.D., Schetz J.A., O’Brien W.F. Integration of an aeroramp injector/plasma igniter for hydrocarbon scramjets // J. Propulsion and Power. 2003. V. 19. № 2. P. 170–182. https://doi.org/10.2514/2.6114
  3. Gallimore S.D., Jacobson L.S., O’Brien W.F. Schetz J.A. Operational sensitivities of an scramjet ignition/fuel – injection system // J. Propulsion and Power. 2003. V. 19. № 2 P. 183–189. https://doi.org/10.2514/2.6116
  4. Chernikov V., Ershov A., Shibkov V., Timofeev B., Timofeev I., Vinogradov V., Van Wie D.M. Gas discharges in supersonic flows of air-propane mixtures // AIAA Paper 2001–2948. 6 p. https://doi.org/10.2514/6.2001-2948
  5. Esakov I., Grachev L., Khodataev K., WanWie D.M. Investigation of under-critical microwave streamer discharge for jet engine fuel ignition // AIAA Paper 2001–2939. 9 p. https://doi.org/10.2514/6.2001-2939
  6. Aleksandrov N., Anikin N., Bazelyan E., Zatsepin D., Starikovskaia S., Starikovskii A. Chemical reactions and ignitions in hydrocarbon-air mixtures by high-voltage nanosecond gas discharge // AIAA Paper 2001–2949. 10 p. https://doi.org/10.2514/6.2001-2949
  7. Firsov A., Bityurin V., Tarasov D., Troshkin R., Bocharov A. Longitudinal DC discharge in a supersonic flow: numerical simulation and experiment // Energies. 2022. V. 15. № 9. P. 7015. https://doi.org/10.3390/en15197015
  8. Firsov A.A. Experimental investigation of flameholding in scramjet combustor by pylon with plasma actuator based on Q-DC discharge // Aerospace. 2023. V. 10. № 3. P. 204. https://doi.org/10.3390/aerospace10030204
  9. Старик А.М., Луховицкий Б.И. О механизме интенсификации горения при одновременном возбуждении колебательных и электронных состояний реагирующих молекул // ДАН. 2005. Т. 402. № 3. С. 333–338. https://doi.org/10.1134/1.1941500
  10. Иванов В.В., Скворцов В.В., Ефимов Б.Г., Пындык А.М., Киреев А.Ю., Крашенинников В.Н., Шиленков С.В. Спектроскопические исследования продольного разряда в сверхзвуковом потоке воздуха при инжекции пропана в зону разряда // ТВТ. 2008. Т. 46. № 1. С. 7–14. https://doi.org/10.1134/s10740-008-1002-5
  11. Ефимов Б.Г., Иванов В.В., Скворцов В.В. Стародубцев М.А. Стабилизация горения пропана в сверхзвуковом потоке воздуха с помощью неравновесного продольного разряда и соосной с ним локальной зоны пониженного давления // Изв. РАН. МЖГ. 2010. № 4. С. 143–152. https://doi.org/10.1134/s0015462810040137
  12. Chernyshev S.L., Ivanov V.V., Skvortsov V.V. A concept of a volume-centered non-equilibrium discharge generation in ducts for the fuel combustion realization in high velocity flows // 6th European Conference for Aeronautics and Space Sciences (EUCASS). 29.06–03.07.2015. Krakov, PP- SAB Combustion. № 026. Р. 1–8.
  13. Алаторцев В.К., Иншаков С.И., Иншаков И.С., Рожков А.Ф., Скворцов В.В., Урусов А.Ю., Успенский А.А. Исследование объемно-центрированного разряда в сверхзвуковом потоке воздуха при дополнительной инжекции пропана и кислорода // Ученые записки ЦАГИ. 2017. Т. 43. № 6. С. 41–52. https://doi.org/10.1615/tsagiscij.2018025534
  14. Иншаков С.И., Скворцов В.В., Шахатов В.А., Кудрявцева Е.Д., Успенский А.А. Исследование распределений вращательных температур молекул С2 в высокотемпературных зонах, формируемых в сверхзвуковом потоке при инжекции пропана и кислорода в область разряда // ТВТ. 2022. Т. 60. № 2. С. 72–183 https://doi.org/10.1134/S0018151X22010345

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concepts of developed electric discharge modules.

Download (105KB)
3. Fig. 2. Photographs of discharges created using modules, the circuits of which are shown in Fig. 1a and Fig. 1b, respectively.

Download (29KB)
4. Fig. 3. Distribution of the velocity pressure in the gap between the lower edge of the anode and the wall: 1 - L = 85 mm, p = 5.33×104 Pa; 2 - L = 42 mm, p = 3.92×104 Pa; 3 - L = 42 mm, p = 5.04×104 Pa.

Download (16KB)
5. Fig. 4. Distributions of rotational temperature along the height of the discharge gap, obtained at a number of distances from the anode cut for ethylene (a) and propane (b) at a discharge current of 1.5 A and a horizontal anode section length of 42 mm.

Download (48KB)
6. Fig. 5. Distribution of static pressure along the length of the channel before (1) and after (2) ignition of the fuel-air mixture by an electric discharge during the injection of hydrogen and oxygen into the discharge area.

Download (18KB)

Copyright (c) 2025 Russian Academy of Sciences