Energy conservation equations of motion
- Авторлар: Vinokurov N.A.1
- 
							Мекемелер: 
							- Budker Institute of Nuclear Physics Siberian Branch of the Russian Academy of Sciences
 
- Шығарылым: Том 518, № 1 (2024)
- Беттер: 3-9
- Бөлім: ФИЗИКА
- URL: https://kld-journal.fedlab.ru/2686-7400/article/view/677499
- DOI: https://doi.org/10.31857/S2686740024050017
- EDN: https://elibrary.ru/HYDNQA
- ID: 677499
Дәйексөз келтіру
Аннотация
A conventional derivation of motion equations in mechanics and field equations in field theory is based on the principle of least action with a proper Lagrangian. With a time-independent Lagrangian, a function of coordinates and velocities that is called energy is constant. This paper presents an alternative approach, namely derivation of a general form of equations of motion that keep the system energy, expressed as a function of generalized coordinates and corresponding velocities, constant. These are Lagrange’s equations with addition of gyroscopic forces. The important fact, that the energy is defined as the function on the tangent bundle of configuration manifold, is used explicitly for the derivation. The Lagrangian is derived from a known energy function. A development of generalized Hamilton’s and Lagrange’s equations without the use of variational principles is proposed. The use of new technique is applied to derivation of some equations.
Толық мәтін
 
												
	                        Авторлар туралы
N. Vinokurov
Budker Institute of Nuclear Physics Siberian Branch of the Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: N.A.Vinokurov@inp.nsk.su
				                					                																			                								
Corresponding Member of the RAS
Ресей, NovosibirskӘдебиет тізімі
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді