Genome-wide association analysis in chickpea landraces and cultivars

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chickpea (Cicer arientinum) is an important leguminous crop, which is widely grown especially in the Near East. In wet weather conditions, the susceptibility of chickpeas to fungal diseases such as Ascochyta blight and Fusarium blight increases. Thus, selection of disease-resistant and early-ripening varieties is critically needed. The present study was conducted to investigate genome associations in 171 samples of chickpea plants, grown in two experimental stations in Krasnodar (Kuban experimental station) and Astrakhan (Astrakhan experimental station), examine relationship between genes and 12 phenotypic traits as well as explore the association between genes and 3 hallmarks of resistance to pathogenes: Fusarium blight, Ascochyta blight and Noctuidae. Variants associated with different phenotypic traits were identified using a genome-wide association study (GWAS).

About the authors

M. A Duk

Peter the Great St. Petersburg Polytechnic University;Ioffe Institute

Email: duk@mail.ioffe.ru
St. Petersburg, Russia

A. A Kanapin

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

M. P Bankin

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

M. A Vishnyakova

Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

St. Petersburg, Russia

S. V Bulyntsev

Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

St. Petersburg, Russia

M. G Samsonova

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

References

  1. R. J. Redden and J. D., Berger, In Chickpea Breeding & Management (CABI: Wallingford, UK, 2007), pp. 113.
  2. R. K. Varshney, M. Thudi, M. Roorkiwal, et al, Nat. Genet., 51 (5), 857 (2019).
  3. M. Thudi, et al., Sci. Rep., 6, 38636 (2016).
  4. J. Kumar and S. Abbo, Adv. Agronomy, 72, 107 (2001).
  5. V. V. Gursky, K. N. Kozlov, S. V. Nuzhdin, and M. G. Samsonova, Front. Genetics, 9, 547 (2018)
  6. U. Ch. Jha, P. Ch. Kole, and N. P. Singh, Legume Res., 44 (4), 382 (2019)
  7. A. Sokolkova, S. V. Bulyntsev, P.L. Chang, et al., Int. J. Mol. Sci., 21, 3952 (2020)
  8. R. K. Varshney, et al., Nature, 599, 622 (2021)
  9. P. J. Bradbury, Z. Zhang, D. E. Kroon, et al., Bioinformatics 23, 2633 (2007)
  10. Sh. Purcell, et al., Am. J. Hum. Genet., 81 (3), 559 (2007)
  11. X. Zheng, D. Levine, J. Shen, et al., Bioinformatics, 28 (24), 3326 (2012)
  12. D. H. Alexander, J. Novembre, and K. Lange, Genome Res., 19, 1655 (2009)
  13. J. Wang and Z. Zhang, Genomics Proteomics Bioinformatics, 19 (4), 629 (2021)
  14. P. Danecek, A. Auton, G. Abecasis, et al., Bioinformatics, 27 (15), 2156 (2011)
  15. Ch. Zhang, Sh.-Sh. Dong, J.-Y. Xu, et al., Bioinformatics, 35, 1786 (2019)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences