About the pathway of amyloid aggregation of titin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of amyloid aggregation is quite complex and poorly understood. In this work, having summarized previously obtained results on the aggregation of the multidomain smooth muscle protein titin, an attempt has been made to expand understanding of this process, and a new possible mechanism by which amyloid aggregation of titin may occur is delineated. Our main conclusion is that the ability of titin to form amorphous aggregates seems to be the only possible way of aggregation of this protein. Most likely, only separate parts of the molecules, but not the whole protein, are involved in the formation of the amyloid structure in amorphous aggregates of smooth muscle titin. This feature, given the large size of the protein molecule, distinguishes titin from other amyloid or amyloid-like proteins. The paper discusses the potential energy landscape underlying the formation of titin amyloid aggregates.

About the authors

L. G Bobyleva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

T. A Uryupina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

M. A Timchenko

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

S. N Udaltsov

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

I. M Vikhlyantsev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences;Institute of Fundamental Medicine and Biology, Kazan Federal University

Pushchino, Moscow Region, Russia;Kazan, Russia

A. G Bobylev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: bobylev1982@gmail.com
Pushchino, Moscow Region, Russia

References

  1. C. Li, J. Adamcik, and R. Mezzenga, Nat. Nanotechnol., 7 (7), 421 (2012). doi: 10.1038/nnano.2012.62
  2. R. Nelson, M. R. Sawaya, M. Balbirnie, et al., Nature, 435 (7043), 773 (2005).
  3. M. R. Sawaya, S. Sambashivan, R. Nelson, et al., Nature, 447 (7143), 453 (2007). doi: 10.1038/nature05695
  4. D. Eisenberg and M. Jucker, Cell, 148 (6), 1188 (2012). doi: 10.1016/j.cell.2012.02.022
  5. H. Wille, W. Bian, M. McDonald, et al., Proc. Natl. Acad. Sci. USA, 106 (40), 16990 (2009). doi: 10.1073/pnas.0909006106
  6. T. P. Knowles, A. W. Fitzpatrick, S. Meehan, et al., Science. 318 (5858), 1900 (2007). doi: 10.1126/science.1150057
  7. S. Keten and M. J. Buehler, Nano Lett., 8 (2), 743 (2008). doi: 10.1021/nl0731670
  8. F. S.Ruggeri, J. Adamcik, J. S. Jeong, et al., Angew Chem.Int. Ed. Engl. 54 (8), 2462 (2015). doi: 10.1002/anie.201409050
  9. V. N. Uversky, FEBS J., 277, 2940 (2010).
  10. C. B. Anfinsen, Science, 181, 223 (1973).
  11. M. Vendruscolo and C. M. Dobson, Philos. Trans. A. Math. Phys. Eng. Sci., 363, 433 (2005).
  12. P. G. Wolynes, Philos. Trans. A. Math. Phys. Eng. Sci., 363, 453 (2005).
  13. J. C. Rochet and P. T. Lansbury Jr, Curr. Opin. Struct. Biol., 10, 60 (2000).
  14. T. R. Jahn, S. E. Radford, FEBS J., 272 (23), 5962 (2005). doi: 10.1111/j.1742-4658.2005.05021.x
  15. V. Daggett and A. R. Fersht, Trends Biochem. Sci., 28, 18 (2003).
  16. A. R. Fersht, Proc. Natl. Acad. Sci. USA, 97, 1525 (2000).
  17. S. E. Radford, C. M. Dobson, and P. A. Evans, Nature, 358, 302 (1992)
  18. D. Baram and A. Yonath, FEBS Lett., 579, 948 (2005).
  19. T. M. Phan and J. D. Schmit. Biophys J., 121 (15), 2931 (2022). doi: 10.1016/j.bpj.2022.06.031
  20. V. N. Uversky and A. L. Fink, Biochim. Biophys. Acta, 1698, 131 (2004).
  21. J. K. Freundt and W. A. Linke, J. Appl. Physiol., 126 (5), 1474 (2019). doi: 10.1152/japplphysiol.00865.2018.
  22. I. M. Vikhlyantsev and Z. A. Podlubnaya, Biophys. Rev., 9 (3), 189 (2017). doi: 10.1007/s12551-017-0266-6
  23. K. Kim and T. C. Keller 3rd, J. Cell Biol., 156 (1), 101 (2002). doi: 10.1083/jcb.200107037
  24. A. G. Bobylev, O. V. Galzitskaya, R. S. Fadeev, et al., Biosci. Rep. Biosci Rep., 36 (3), e00334 (2016). doi: 10.1042/BSR20160066
  25. E. I. Yakupova, I. M. Vikhlyantsev, L. G. Bobyleva, et al., J. Biomol. Struct. Dyn., 36 (9), 2237 (2018). doi: 10.1080/07391102.2017.1348988
  26. A. G. Bobylev, E. I. Yakupova, L. G. Bobyleva, et al., Mol. Biol. (Moscow), 54 (4), 643 (2020). doi: 10.31857/S0026898420040047
  27. A. G. Bobylev, E. I. Yakupova, L. G. Bobyleva, et al., Int. J. Mol Sci., 24 (2), 1056 (2023). doi: 10.3390/ijms24021056
  28. M. R. Krebs, G. L. Devlin, and A. M. Donald, Biophys. J., 96 (12), 5013 (2009).
  29. H. H. J. de Jongh, T. Groneveld, and J. de Groot, J. Dairy Sci., 84, 562 (2001).
  30. M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, Biophys. J., 88, 2013 (2005).
  31. M. B. Borgia, A. A. Nickson, J. Clarke, M. J. Hounslow., J. Am. Chem. Soc., 135 (17), 6456 (2013). doi: 10.1021/ja308852b
  32. A. Borgia, K. R. Kemplen, M. B. Borgia, et al., Nat.Commun., 6, 8861 (2015).
  33. H. Lu, B. Isralewitz, A. Krammer, et al., Biophys. J., 75 (2), 662 (1998). doi: 10.1016/S0006-3495(98)77556-3
  34. J. Waeytens, J. Mathurin, A. Deniset-Besseau, et al., Analyst, 146 (1), 132 (2021). doi: 10.1039/d0an01545h
  35. E. C. Eckels, S. Haldar, R. Tapia-Rojo, et al., Cell Rep., 27, 1836 (2019).
  36. J. A. Rivas-Pardo, E. C. Eckels, I. Popa, et al., Cell Rep., 14, 1339 (2016).
  37. S. Kumar and J. Walter, Aging (NY), 3 (8), 803 (2011). doi: 10.18632/aging.100362
  38. J. Gsponer and M. Vendruscolo, Prot. Pept. Lett., 13 (3), 287 (2006). doi: 10.2174/092986606775338407
  39. T. Eichner and S. E. Radford, Mol. Cell., 43 (1), 8 (2011). doi: 10.1016/j.molcel.2011.05.012
  40. K. W. Tipping, P. van Oosten-Hawle, E. W. Hewitt, and S. E. Radford, Trends Biochem. Sci., 40 (12), 719 (2015). doi: 10.1016/j.tibs.2015.10.002
  41. A. K. Buell, A. Dhulesia, D. A. White, et al., Angew Chem.Int. Ed. Engl., 51 (21), 5247 (2012). doi: 10.1002/anie.201108040
  42. A. J. Baldwin, T. P. Knowles, G. G. Tartaglia, et al., J. Am. Chem. Soc., 133 (36), 14160 (2011). doi: 10.1021/ja2017703
  43. E. Gazit, Angew Chem.Int. Ed. Engl., 41 (2), 257 (2002). doi: 10.1002/1521-3773(20020118)41: 2<257::aid-anie257>3.0.co;2-m

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences