Search for epistatically interacting genetic variants that are associated with vasovagal syncope within biallelic combinations
- Authors: Titov B.V.1,2, Matveeva N.F.1,2, Bazyleva E.A.1, Pevzner A.V.1, Favorova O.O.1,2
-
Affiliations:
- Chazov National Medical Research Center of Cardiology
- Pirogov Russian National Research Medical University
- Issue: Vol 60, No 3 (2024)
- Pages: 85-93
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://kld-journal.fedlab.ru/0016-6758/article/view/666975
- DOI: https://doi.org/10.31857/S0016675824030092
- EDN: https://elibrary.ru/DOIQHK
- ID: 666975
Cite item
Abstract
The most common cause of transient loss of consciousness is vasovagal syncope (VVS), which occurs due to hypoperfusion of the brain due to the interruption of vegetative blood circulation control leading to arterial hypotension. It is known that there is a genetic predisposition to VVS, but the data on the role of individual genes are quite inconsistent. Using APSampler software,which based on a Markov chain Monte Carlo technique and Bayesian nonparametric statistics, we identified biallelic combinations associated with VVS and investigated the nature of interaction between their components. We used the previously obtained results of genomic typing of single nucleotide polymorphisms (SNPs) of 5 genes, the products of which are involved in neurohumoral regulation, and 4 SNPs within locus 2q32.1, supplemented with data for new individuals included in the study. The total sample included 175 patients with a confirmed diagnosis of VVS and 200 control individuals without a history of syncope. Eleven pairwise combinations of SNPs of different genes were found to be associated with VVS. Five of these combinations were epistatic, four of which included SNPs at the 2q32.1 locus located within or near noncoding RNA genes. It is suggested that genes of noncoding RNAs localized on chromosome 2 may directly or indirectly (through cascades of interactions) participate in the regulation of the activity of genes forming epistatic combinations with them.
Full Text

About the authors
B. V. Titov
Chazov National Medical Research Center of Cardiology; Pirogov Russian National Research Medical University
Email: olga.favorova@gmail.com
Russian Federation, Moscow, 121552; Moscow, 117997
N. F. Matveeva
Chazov National Medical Research Center of Cardiology; Pirogov Russian National Research Medical University
Email: olga.favorova@gmail.com
Russian Federation, Moscow, 121552; Moscow, 117997
E. A. Bazyleva
Chazov National Medical Research Center of Cardiology
Email: olga.favorova@gmail.com
Russian Federation, Moscow, 121552
A. V. Pevzner
Chazov National Medical Research Center of Cardiology
Email: olga.favorova@gmail.com
Russian Federation, Moscow, 121552
O. O. Favorova
Chazov National Medical Research Center of Cardiology; Pirogov Russian National Research Medical University
Author for correspondence.
Email: olga.favorova@gmail.com
Russian Federation, Moscow, 121552; Moscow, 117997
References
- Brignole M., Moya A., de Lange F.J. et al.ESC Scientific Document Group. 2018 ESC Guidelines for the diagnosis and management of syncope // European Heart J. 2018. Vol. 39. P. 1883–1948. https://doi.org/10.5603/KP.2018.0161
- Brignole M., Moya A., de Lange F.J. etal.Рекомендации ЕОК по диагностике и лечению синкопальных состояний 2018 // Росс. кардиол. журнал. 2019. Т. 24. № 7. С. 130–194. https://doi.org/10.15829/1560-4071-2019-7-130-194
- Buszko K., Kujawski S., Newton J.L., Zalewski P. Hemodynamic response to the head-up tilt testin patients with syncopeasa predictor of the test outcome: A meta-analysis approach // Front. Physiology. 2019. V. 10. https://doi.org/10.3389/fphys.2019.00184
- Dockx K., Avau B., De Buck E. et al. Physical manoeuvers as a preventive intervention to manage vasovagal syncope: A systematic review // PLoS One. 2019. V. 14. № 2. https://doi.org/10.1371/journal.pone.0212012
- Matveeva N., Titov B., Bazyleva E. et al. Towards understanding the genetic nature of vasovagal syncope // Int. J. Mol. Sci. 2021. V. 22. № 19. https://doi.org/10.3390/ijms221910316
- Benditt D.G., van Dijk J.G., Krishnappa D. et al. Neurohormones in the Pathophysiology of Vasovagal Syncope in Adults // Front. Cardiovascular Med. 2020. V. 7. https://doi.org/10.3389/fcvm.2020.00076
- Hadji-Turdeghal K., Andreasen L., Hagen C.M. etal. Genome-wide association study identifies locus at chromosome 2q32.1 associated with syncope and collapse // Cardiovascular Res. 2020. V. 116. № 1. P. 138–148. https://doi.org/10.1093/cvr/cvz106
- Aegisdottir H.M., Thorolfsdottir R.B., Sveinbjornsson G. et al. Genetic variants associated with syncope implicate neural and autonomic processes // European Heart J. 2023. V. 44. № 12. P. 1070–1080. https://doi.org/10.1093/eurheartj/ehad016
- Phillips P.C. Epistasis–the essential role of gene interactions in the structure and evolution of genetic systems // Nat. Rev. Genetics. 2008. V. 9. № 11. P. 855–867. https://doi.org/10.1038/nrg2452
- Titov B., Matveeva N., Kulakova O. et al. Vasovagal syncope Is associated with variants in genes involved in neurohumoral dignaling pathways // Genes (Basel). 2022. V. 13. № 9. https://doi.org/10.3390/genes13091653
- Матвеева Н.А., Титов Б.В., Базылева Е.А. и др. Ассоциация полиморфных вариантов генома в области 2q32.1 с развитием вазовагальных обмороков // Мол. биология. Т. 57. № 5. С. 827 – 832.
- Favorov A.V., Andreewski T.V., Sudomoina M.A. et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans // Genetics. 2005. V. 171. P. 2113–2121. https://doi.org/10.1534/genetics.105.048090
- APSampler. – URL: http://apsampler.sourceforge.net/
- Barsova R.M., Lvovs D., Titov B.V. et al. Variants of the coagulation and inflammation genes area replicably associated with myocardial infarction and epistatically interact in Russians // PLoS One. 2015. V. 10. № 12. https://doi.org/10.1371/journal.pone.0144190
- Lvovs D., Фаворова О.О., Фаворов А.В. Полигенный подход к исследованиям полигенных заболеваний // Acta Naturae. 2012. Т. 4. № 3 (14). С. 62–75 https://doi.org/10.32607/20758251-2012-4-3-59-71
- Benarroch E.E. The autonomic nervous system: Basic anatomy and physiology // CONTINUUM: Lifelong Learning in Neurology. 2007. V. 13. P. 13–32. https://doi.org/10.1212/01.CON.0000299964.20642.9a
- Chen J., Lipska B.K., Halim N. et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain // Am. J. Human Genetics. 2004. V. 75. № 5. P. 807–821. https://doi.org/10.1086/425589
- Vanhoutte P.M. Nitric oxide: From Ggood to bad // Ann. Vasc. Diseases. 2018. V. 1. № 1. P. 41–51. https://doi.org/10.3400/avd.ra.17-00134
- Augeri A.L., Tsongalis G.J., Van Heest J.L. et al. The endothelial nitric oxide synthase –786 T > C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure // Atherosclerosis. 2009. V. 204. № 2. P. e28–34. https://doi.org/10.1016/j.atherosclerosis.2008.12.015
- Ikenouchi-Sugita A., Yoshimura R., Kishi T. et al. Three polymorphisms of the eNOS gene and plasma levels of metabolites of nitric oxide in depressed Japanese patients: A preliminary report // Human Psychopharmacology. 2011. V. 26. № 7. P.531–534. https://doi.org/10.1002/hup.1239
Supplementary files
