Xenobiotics and products of their transformation in wastewater (literature review)

封面

如何引用文章

全文:

详细

Many different chemical pollutants get into the hydrosphere with wastewater. An essential source of xenobiotic transfer into the aquatic environment is wastewater treatments plants. The widespread use of drugs, personal care products, cosmetic products, household chemicals, disinfectants and insecticides is directly reflected in their presence in the aquatic environment. It is the reason for the appearance of these chemical components and products of their transformation in surface waters, groundwater, and drinking water. Besides, various industries lead to the formation of a large amount of wastewater contaminated with textile dyes, oil products, silicones, phenols and their derivatives, phthalate ethers, bisphenol A and other substances capable of causing harm to water bodies, harming aquatic biota or even inflicting damage to ecosystems. Substances that have entered wastewater can be transformed into many other compounds during water purification and afterwards under environmental factors. The transformation products can be more toxic than the parent compounds, and some can convert back to the parent compounds under various factors. The search of sources describing researches dedicated to pollutants and their transformation in aqueous systems was carried out in the English-speaking text databases: PubMed, Scopus, Science Direct, Web of Science, Research Gate, Springer Link and scientific electronic library — eLIBRARY.ru.

Contribution:
Savostikova O.N. — the concept and design of the study, collection and processing of material, writing the text;
Mamonov R.A. — the concept and design of the study, collection and processing of the material;
Turina I.A. — collection and processing of material, writing the text;
Alekseeva A.V. — collection and processing of the material;
Nikolaeva N.I. — writing the text.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: March 22, 2021 / Accepted: September 28, 2021 / Published: November 30, 2021

作者简介

Olga Savostikova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Biomedical Agency

编辑信件的主要联系方式.
Email: noemail@neicon.ru
ORCID iD: 0000-0002-7032-1366
俄罗斯联邦

Roman Mamonov

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Biomedical Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6540-6015
俄罗斯联邦

Irina Turina

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Biomedical Agency

Email: iturina@cspmz.ru
ORCID iD: 0000-0002-9364-5654

MD, biologist of the Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Biomedical Agency (Centre for Strategic Planning, Moscow, 119121, Russian Federation.

e-mail: ITurina@cspmz.ru

俄罗斯联邦

Anna Alekseeva

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Biomedical Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-0422-8382
俄罗斯联邦

Natalya Nikolaeva

Sechenov Moscow State Medical University (Sechenov University)

Email: noemail@neicon.ru
ORCID iD: 0000-0003-1226-9990
俄罗斯联邦

参考

  1. Mathon B., Choubert J.M., Miege C., Coquery M. A review of the photodegradability and transformation products of 13 pharmaceuticals and pesticides relevant to sewage polishing treatment. Sci. Total Environ. 2016; 551: 712-24. https://doi.org/10.1016/j.scitotenv.2016.02.009
  2. Zuccato E., Calamari D., Natangelo M., Fanelli R. Presence of therapeutic drugs in the environment. Lancet. 2000; 355(9217): 1789-90. https://doi.org/10.1016/S0140-6736(00)02270-4
  3. Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002; 36(6): 1202-11. https://doi.org/10.1021/es011055j
  4. Ternes T.A. Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends Anal. Chem. 2001; 20(8): 419-34. https://doi.org/10.1016/S0165-9936(01)00078-4
  5. Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002; 266(3-4): 175-89. https://doi.org/10.1016/S0022-1694(02)00165-8
  6. Jones O.A., Lester J.N., Voulvoulis N. Pharmaceuticals: a threat to drinking water? Trends Biotechnol. 2005; 23(4): 163-7. https://doi.org/10.1016/j.tibtech.2005.02.001
  7. Togola A., Budzinski H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A. 2008; 1177(1): 150-8. https://doi.org/10.1016/j.chroma.2007.10.105
  8. La Farre M., Pérez S., Kantiani L., Barceló D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 2008; 27(11): 991-1007. https://doi.org/10.1016/j.trac.2008.09.010
  9. Donner E., Kosjek T., Qualmann S., Kusk K.O., Heath E., Revitt D.M., et al. Ecotoxicity of carbamazepine and its UV photolysis transformation products. Sci. Total Environ. 2013; 443: 870-6. https://doi.org/10.1016/j.scitotenv.2012.11.059
  10. Celiz M.D., Tso J., Aga D.S. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ. Toxicol. Chem. 2009; 28(12): 2473-84. https://doi.org/10.1897/09-173.1
  11. Azuma T., Ishida M., Hisamatsu K., Yunoki A., Otomo K., Kunitou M., et al. A method for evaluating the pharmaceutical deconjugation potential in river water environments. Chemosphere. 2017; 180: 476-82. https://doi.org/10.1016/j.chemosphere.2017.04.040
  12. Bendz D., Paxéus N.A., Ginn T.R., Loge F.J. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mater. 2005; 122(3): 195-204. https://doi.org/10.1016/j.jhazmat.2005.03.012
  13. Carballa M., Omil F., Lema J.M., Llompart M.A., Garcı́a-Jares C., Rodrı́guez I., et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004; 38(12): 2918-26. https://doi.org/10.1016/j.watres.2004.03.029
  14. Spongberg A.L., Witter J.D. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci. Total Environ. 2008; 397(1-3): 148-57. https://doi.org/10.1016/j.scitotenv.2008.02.042
  15. Couperus N.P., Pagsuyoin S.A., Bragg L.M., Servos M.R. Occurrence, distribution, and sources of antimicrobials in a mixed-use watershed. Sci. Total Environ. 2016; 541: 1581-91. https://doi.org/10.1016/j.scitotenv.2015.09.086
  16. Metcalfe C.D., Chu S., Judt C., Li H., Oakes K.D., Servos M.R., et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010; 29 (1): 79-89. https://doi.org/10.1002/etc.27
  17. Carrara C., Ptacek C.J., Robertson W.D., Blowes D.W., Moncur M.C., Sverko E., et al. Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environ. Sci. Technol. 2008; 42 (8): 2805-2811. https://doi.org/10.1021/es070344q
  18. Lapworth D., Baran N., Stuart M., Ward R. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 2012; 163: 287-303. https://doi.org/10.1016/j.envpol.2011.12.034
  19. Metcalfe C., Hoque M.E., Sultana T., Murray C., Helm P., Kleywegt S. Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers. Environ. Sci. Process. Impacts. 2014; 16(3): 473-81. https://doi.org/10.1039/c3em00508a
  20. Petrie B., Barden R., Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015; 72: 3-27. https://doi.org/10.1016/j.watres.2014.08.053
  21. Hirsch R., Ternes T., Haberer K., Kratz K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999; 225 (1): 109-118. https://doi.org/10.1016/s0048-9697(98)00337-4
  22. Blair B.D., Crago J.P., Hedman C.J., Treguer R.J.F., Magruder C., Royer L.S., et al. Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci. Total Environ. 2013; 444: 515-21. https://doi.org/10.1016/j.scitotenv.2012.11.103
  23. Phillips P.J., Smith S.G., Kolpin D.W., Zaugg S.D., Buxton H.T., Furlong E.T., et al. Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ. Sci. Technol. 2010; 44(13): 4910-6. https://doi.org/10.1021/es100356f
  24. Calza P., Medana C., Padovano E., Giancotti V., Minero C. Fate of selected pharmaceuticals in river waters. Environ. Sci. Pollut. Res. 2013; 20(4): 2262-70. https://doi.org/10.1007/s11356-012-1097-4
  25. Gonçalves C.M.O., Sousa M.A.D., Alpendurada M.d.F.P. Analysis of acidic, basic and neutral pharmaceuticals in river waters: clean-up by 1°, 2° amino anion exchange and enrichment using an hydrophilic adsorbent. Int. J. Environ. Anal. Chem. 2013; 93(1): 1-22. https://doi.org/10.1080/03067319.2012.702272
  26. Lindholm-Lehto P.C., Ahkola H.S., Knuutinen J.S., Herve S.H. Occurrence of pharmaceuticals in municipal wastewater, in the recipient water, and sedimented particles of northern Lake Päijänne. Environ. Sci. Pollut. Res. 2015; 22(21): 17209-23. https://doi.org/10.1007/s11356-015-4908-6
  27. Vione D., Maddigapu P.R., De Laurentiis E., Minella M., Pazzi M., Maurino V., et al. Modelling the photochemical fate of ibuprofen in surface waters. Water Res. 2011; 45(20): 6725-36. https://doi.org/10.1016/j.watres.2011.10.014
  28. Larsen C., Yu Z.H., Flick R., Passeport E. Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci. Total Environ. 2019; 695: 133772. https://doi.org/10.1016/j.scitotenv.2019.133772
  29. Landsdorp D., Vree T., Janssen T., Guelen P. Pharmacokinetics of rectal diclofenac and its hydroxy metabolites in man. Int. J. Clin. Pharmacol. Ther. Toxicol. 1990; 28(7): 298-302.
  30. Andreozzi R., Raffaele M., Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere. 2003; 50(10): 1319-30. https://doi.org/10.1016/s0045-6535(02)00769-5
  31. Schulze T., Weiss S., Schymanski E., von der Ohe P.C., Schmitt-Jansen M., Altenburger R., et al. Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis. Environ. Pollut. 2010; 158(5): 1461-6. https://doi.org/10.1016/j.envpol.2009.12.032
  32. Agüera A., Pérez Estrada L., Ferrer I., Thurman E., Malato S., Fernández-Alba A. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 2005; 40(7): 908-15. https://doi.org/10.1002/jms.867
  33. Gröning J., Held C., Garten C., Claußnitzer U., Kaschabek S.R., Schlömann M. Transformation of diclofenac by the indigenous microflora of river sediments and identification of a major intermediate. Chemosphere. 2007; 69(4): 509-16. https://doi.org/10.1016/j.chemosphere.2007.03.037
  34. Chen P., Wang F.L., Yao K., Ma J.S., Li F.H., Lv W.Y., et al. Photodegradation of mefenamic acid in aqueous media: kinetics, toxicity and photolysis products. Bull. Environ. Contam. Toxicol. 2016; 96(2): 203-9. https://doi.org/10.1007/s00128-015-1680-8
  35. Cycoń M., Mrozik A., Piotrowska-Seget Z. Antibiotics in the soil environment - degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019; 10: 338. https://doi.org/10.3389/fmicb.2019.00338
  36. European Centre for disease prevention and Control. An agency of the European Union. Country overview of antimicrobial consumption. Available at: https://www.ecdc.europa.eu/en/activities/surveillance/esac-net/pages/index.aspx
  37. Ji X., Shen Q., Liu F., Ma J., Xu G., Wang Y., et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012; 235-236: 178-85. https://doi.org/10.1016/j.jhazmat.2012.07.040
  38. Harnisz M., Korzeniewska E., Gołaś I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere. 2015; 128: 134-41. https://doi.org/10.1016/j.chemosphere.2015.01.035
  39. Barbosa M.O., Moreira N.F., Ribeiro A.R., Pereira M.F., Silva A.M. Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res. 2016; 94: 257-79. https://doi.org/10.1016/j.watres.2016.02.047
  40. Ternes T., Joss A. Human Pharmaceuticals, Hormones and Fragrances. London, New York: IWA publishing; 2007.
  41. Loos R., Carvalho R., António D.C., Comero S., Locoro G., Tavazzi S., et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013; 47(17): 6475-87. https://doi.org/10.1016/j.watres.2013.08.024
  42. Shenker M., Harush D., Ben-Ari J., Chefetz B. Uptake of carbamazepine by cucumber plants - a case study related to irrigation with reclaimed wastewater. Chemosphere. 2011; 82(6): 905-10. https://doi.org/10.1016/j.chemosphere.2010.10.052
  43. Vymazal J., Březinová T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ. Int. 2015; 75: 11-20. https://doi.org/10.1016/j.envint.2014.10.026
  44. Kools S.A., Moltmann J.F., Knacker T. Estimating the use of veterinary medicines in the European Union. Regul. Toxicol. Pharmacol. 2008; 50(1): 59-65. https://doi.org/10.1016/j.yrtph.2007.06.003
  45. Kumar M., Jaiswal S., Sodhi K.K., Shree P., Singh D.K., Agrawal P.K., et al. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ. Int. 2019; 124: 448-61. https://doi.org/10.1016/j.envint.2018.12.065
  46. Munita J.M., Arias C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016; 4(2): 481-511. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
  47. Śliwka-Kaszyńska M., Jakimska-Nagórska A., Wasik A., Kot-Wasik A. Phototransformation of three selected pharmaceuticals, naproxen, 17α-Ethinylestradiol and tetracycline in water: Identification of photoproducts and transformation pathways. Microchem. J. 2019; 148: 673-83. https://doi.org/10.1016/j.microc.2019.05.036
  48. Elizalde-Velázquez G.A., Gómez-Oliván L.M. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives. Sci. Total Environ. 2020; 702: 134924. https://doi.org/10.1016/j.scitotenv.2019.134924
  49. Reinholds I., Muter O., Pugajeva I., Rusko J., Perkons I., Bartkevics V. Determination of pharmaceutical residues and assessment of their removal efficiency at the Daugavgriva municipal wastewater treatment plant in Riga, Latvia. Water Sci. Technol. 2016; 75(2): 387-96. https://doi.org/10.2166/wst.2016.528
  50. Viega B.L., Rocha A.M., Düsman E. Cosmetics with hormonal composition for bioindicators Artemia salina L. and Allium cepa L. toxic potential. Environ. Sci. Pollut. Res. 2020; 27(6): 6659-66. https://doi.org/10.1007/s11356-019-07392-0
  51. MedicinaNET. Estreva. Available at: https://www.medicinanet.com.br/bula/2304/estreva.htm
  52. Tsametis C.P., Isidori A.M. Testosterone replacement therapy: For whom, when and how? Metabolism. 2018; 86: 69-78. https://doi.org/10.1016/j.metabol.2018.03.007
  53. Bila D.M., Dezotti M. Desreguladores endócrinos no meio ambiente: efeitos e conseqüências. Química Nova. 2007; 30: 651-66. https://doi.org/10.1590/S0100-40422007000300027
  54. Wang D., Cao J., Han D., Li W., Feng S. Novel organosilicon synthetic methodologies. Progress Chem. 2019; 31(1): 110-20. https://doi.org/10.7536/PC180535
  55. Liu J., Li J., Mei R., Wang F., Sellamuthu B. Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process. Sep. Purif. Technol. 2014; 132: 16-22. https://doi.org/10.1016/j.seppur.2014.04.050
  56. Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Inn. 2019; 3(2): 275-90. https://doi.org/10.1016/j.biori.2019.09.001
  57. Bhatia S.C. Pollution Control in Textile Industry. New Delhi: Woodhead Publishing India; 2017.
  58. Hossain M.S., Das S.C., Islam J.M.M., Al Mamun M.A., Khan M.A. Reuse of textile mill ETP sludge in environmental friendly bricks - effect of gamma radiation. Rad. Phys. Chem. 2018; 151: 77-83. https://doi.org/10.1016/j.radphyschem.2018.05.020
  59. Wang D.M. Environmental Protection in Clothing Industry. Proceedings of the 2015 International Conference on Sustainable Development (ICSD2015). Singapore: World Scientific Publishing Co Pte Ltd; 2016: 729-35.
  60. Setiadi T., Andriani Y., Erlania M. Treatment of Textile Wastewater by a Combination of Anaerobic and Aerobic Processes: A Denim Processing Plant Case. Southeast Asian Water Environment 1: Selected Papers from the First International Symposium on Southeast Asian Water Environment (Biodiversity and Water Environment). Bangkok: IWA Publishing; 2006: 159-66.
  61. Hassan M.M., Carr C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere. 2018; 209: 201-19. https://doi.org/10.1016/j.chemosphere.2018.06.043
  62. Imran M., Crowley D.E., Khalid A., Hussain S., Mumtaz M.W., Arshad M. Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Bio/Technol. 2015; 14(1): 73-92. https://doi.org/10.1007/s11157-014-9344-4
  63. Aquino J.M., Rocha-Filho R.C., Ruotolo L.A.M., Bocchi N., Biaggio S.R. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem. Eng. J. 2014; 251: 138-45. https://doi.org/10.1016/j.cej.2014.04.032
  64. Khatri J., Nidheesh P.V., Anantha Singh T.S., Suresh Kumar M. Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem. Eng. J. 2018; 348: 67-73. https://doi.org/10.1016/j.cej.2018.04.074
  65. Sandhya S. Biodegradation of Azo Dyes under Anaerobic Condition: Role of Azoreductase. Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry. Berlin: Heidelberg; 2010: 39-57.
  66. Newman M. Fundamentals of Ecotoxicology. Boca Raton: CRC Press; 2009.
  67. Rehman K., Shahzad T., Sahar A., Hussain S., Mahmood F., Siddique M.H., et al. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ. 2018; 6: e4802. https://doi.org/10.7717/peerj.4802
  68. Orts F., del Río A.I., Molina J., Bonastre J., Cases F. Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J. Electroanal. Chem. 2018; 808: 387-94. https://doi.org/10.1016/j.jelechem.2017.06.051
  69. Kuzin E.N., Kruchinina N.E. Evaluation of effectiveness of use of complex coagulants for wastewater treatment processes of mechanical engineering. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya. 2019; 62(10): 140–6. https://doi.org/10.6060/ivkkt.20196210.5939 (in Russian)
  70. Mu’azu N.D., Jarrah N., Zubair M., Alagha O. Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review. Int. J. Environ. Res. Public Health. 2017; 14(10): 1094. https://doi.org/10.3390/ijerph14101094
  71. Busca G., Berardinelli S., Resini C., Arrighi L. Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater. 2008; 160(2-3): 265-88. https://doi.org/10.1016/j.jhazmat.2008.03.045
  72. Michałowicz J., Duda W. Phenols - sources and toxicity. Pol. J. Environ. Stud. 2007; 16(3): 347-62.
  73. Heudorf U., Mersch-Sundermann V., Angerer J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health. 2007; 210(5): 623-34. https://doi.org/10.1016/j.ijheh.2007.07.011
  74. Oehlmann J., Oetken M., Schulte-Oehlmann U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. Environ. Res. 2008; 108(2): 140-9. https://doi.org/10.1016/j.envres.2008.07.016
  75. Vandenberg L.N., Maffini M.V., Sonnenschein C., Rubin B.S., Soto A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr. Rev. 2009; 30(1): 75-95. https://doi.org/10.1210/er.2008-0021
  76. Clara M., Windhofer G., Hartl W., Braun K., Simon M., Gans O., et al. Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere. 2010; 78(9): 1078-84. https://doi.org/10.1016/j.chemosphere.2009.12.052
  77. Çifci D.İ., Kınacı C., Arikan O.A. Occurrence of phthalates in sewage sludge from three wastewater treatment plants in Istanbul, Turkey. CLEAN - Soil, Air, Water. 2013; 41(9): 851-5. https://doi.org/10.1002/clen.201200212
  78. Huang J., Nkrumah P.N., Li Y., Appiah-Sefah G. Chemical behavior of phthalates under abiotic conditions in landfills. Rev. Environ. Contam. Toxicol. 2013; 224: 39-52. https://doi.org/10.1007/978-1-4614-5882-1_2
  79. Net S., Sempéré R., Delmont A., Paluselli A., Ouddane B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015; 49(7): 4019-35. https://doi.org/10.1021/es505233b
  80. Staples C.A., Dome P.B., Klecka G.M., Oblock S.T., Harris L.R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998; 36 (10): 2149-73. https://doi.org/10.1016/S0045-6535(97)10133-3
  81. Flint S., Markle T., Thompson S., Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manage. 2012; 104: 19-34. https://doi.org/10.1016/j.jenvman.2012.03.021
  82. Lee S., Liao C., Song G.J., Ra K., Kannan K., Moon H.B. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere. 2015; 119: 1000-6. https://doi.org/10.1016/j.chemosphere.2014.09.011
  83. Pookpoosa I., Jindal R., Morknoy D., Tantrakarnapa K. Occurrence and efficacy of bisphenol A (BPA) treatment in selected municipal wastewater treatment plants, Bangkok, Thailand. Water Sci. Technol. 2015; 72(3): 463-71. https://doi.org/10.2166/wst.2015.232
  84. Fent G., Hein W.J., Moendel M.J., Kubiak R. Fate of 14C-bisphenol A in soils. Chemosphere. 2003; 51(8): 735-6. https://doi.org/10.1016/S0045-6535(03)00100-0
  85. Vandenberg L.N. Exposure to bisphenol A in Canada: invoking the precautionary principle. CMAJ. 2011; 183(11): 1265-70. https://doi.org/10.1503/cmaj.101408
  86. Montes-Grajales D., Fennix-Agudelo M., Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017; 595: 601-14. https://doi.org/10.1016/j.scitotenv.2017.03.286
  87. Yuval A., Friedler E., Westphal J., Olsson O., Dubowski Y. Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound. Sci. Total Environ. 2017; 601-602: 397-404. https://doi.org/10.1016/j.scitotenv.2017.05.172
  88. Wang J., Tian Z., Huo Y., Yang M., Zheng X., Zhang Y. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J. Environ. Sci. 2018; 67: 309-17. https://doi.org/10.1016/j.jes.2017.09.014
  89. Bock M., Lyndall J., Barber T., Fuchsman P., Perruchon E., Capdevielle M. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment. Integr. Environ. Assess. Manag. 2010; 6(3): 393-404. https://doi.org/10.1897/IEAM_2009-070.1
  90. Kuznetsov V.V., Kapustin E.S., Pirogov A.V., Kurdin K.A., Filatova E.A., Kolesnikov V.A. An effective electrochemical destruction of non-ionic surfactants on bismuth-modified lead dioxide anodes for wastewater pretreatment. J. Solid State Electrochem. 2020; 24(1) 173-83. https://doi.org/10.1007/s10008-019-04483-3
  91. Czech B., Ćwikła-Bundyra W. Advanced oxidation processes in Triton X-100 and wash-up liquid removal from wastewater using modified TiO2/Al2O3 photocatalysts. Water Air Soil Pollut. 2012; 223(8): 4813-22. https://doi.org/10.1007/s11270-012-1237-y
  92. Goncharuk V.V., Klishchenko R.E., Kornienko I.V. Destruction of nonionic surfactants in plasmachemical reactor. Khimiya i tekhnologiya vody. 2017; 39(6): 642–50. (in Russian)
  93. Šíma J., Holcová V. Removal of nonionic surfactants from wastewater using a constructed wetland. Chem. Biodivers. 2011; 8(10): 1819-32. https://doi.org/10.1002/cbdv.201100063
  94. Markle J.C., van Buuren B.H., Moran K., Barefoot A.C. Pyrethroid pesticides in municipal wastewater: A baseline survey of publicly owned treatment works facilities. In: Describing the Behavior and Effects of Pesticides in Urban and Agricultural Settings: Chapter 8. ACS Symposium Series, Volume 1168. American Chemical Society; 2014: 177-94. https://doi.org/10.1021/bk-2014-1168.ch008
  95. Eawag - Swiss Federal Institute of Aquatic Science and Technology. Parent-Transformation Product Pairs from Eawag. Available at: https://zenodo.org/record/3829088#.XzuQb-gzaUl
  96. Simon-Delso N., Amaral-Rogers V., Belzunces L.P., Bonmatin J.M., Chagnon M., Downs C., et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015; 22(1): 5-34. https://doi.org/10.1007/s11356-014-3470-y
  97. Ensminger M.P., Budd R., Kelley K.C., Goh K.S. Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA, 2008-2011. Environ. Monit. Assess. 2013; 185(5): 3697-710. https://doi.org/10.1007/s10661-012-2821-8
  98. Budd R., Ensminger M., Wang D., Goh K.S. Monitoring Fipronil and Degradates in California Surface Waters, 2008-2013. J. Environ. Qual. 2015; 44(4): 1233-40. https://doi.org/10.2134/jeq2015.01.0018
  99. Hladik M.L., Kolpin D.W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 2016; 13(1): 12-20. https://doi.org/10.1071/EN15061
  100. Sadaria A.M., Sutton R., Moran K.D., Teerlink J., Brown J.V., Halden R.U. Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California, USA. Environ. Toxicol. Chem. 2017; 36(6): 1473-82. https://doi.org/10.1002/etc.3673

补充文件

附件文件
动作
1. JATS XML

版权所有 © Savostikova O.N., Mamonov R.A., Turina I.A., Alekseeva A.V., Nikolaeva N.I., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.