Gallium selenide thin films grown on silicon by plasma-enhanced chemical vapor deposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gallium selenide (GaSe) thin films on silicon (111) have been first grown by plasma-enhanced chemical vapor deposition (PECVD) using high-purity elemental gallium and selenium as the precursors. The reactive plasma components formed in the gas phase have been studied by optical emission spectroscopy. All grown films have a stoichiometry similar to that of GaSe. An increase in the plasma discharge power to 50 W and higher leads to the formation of an ε-GaSe phase, an improvement in the structural quality of the films, and an increase in the grain sizes with simultaneous grain compaction.

Full Text

Restricted Access

About the authors

M. A. Kudryashov

Nizhny Novgorod State Technical University; Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: mikhail.kudryashov1986@yandex.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

L. A. Mochalov

Nizhny Novgorod State Technical University; Lobachevsky State University of Nizhny Novgorod

Email: mikhail.kudryashov1986@yandex.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

Y. P. Kudryashova

Nizhny Novgorod State Technical University; Lobachevsky State University of Nizhny Novgorod

Email: mikhail.kudryashov1986@yandex.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

E. A. Slapovskaya

Lobachevsky State University of Nizhny Novgorod

Email: mikhail.kudryashov1986@yandex.ru
Russian Federation, Nizhny Novgorod

References

  1. Grzonka J., Claro M.S., Molina-Sánchez A., Sadewasser S., Ferreira P.J. // Adv. Funct. Mater. 2021. V. 31. № 48. P. 2104965.
  2. Jiang B., Hao Z., Ji Y., Hou Y., Yi R., Mao D. et al. // Light Sci. Appl. 2020. V. 9. № 1. P. 63.
  3. Curreli N., Serri M., Zappia M.I., Spirito D., Bianca G., Buha J. et al. // Adv. Electron. Mater. 2021. V. 7. № 3. P. 2001080.
  4. Urakami N., Nakakura S., Hashimoto Y. // Appl. Phys. Express. 2023. V. 16. № 5. P. 056503.
  5. Tonndorf P., Schwarz S., Kern J., Niehues I., Pozo-Zamudio O. Del, Dmitriev A.I. et al. // 2D Mater. 2017. V. 4. No. 2. P. 021010.
  6. Shevchenko O.N., Mikerin S.L., Kokh K.A., Nikolaev N.A. // Appl. Sci. Sci. 2023. V. 13. № 4. P. 2045.
  7. Castellano A. // Appl. Phys. Lett. 1986. V. 48. № 4. P. 298.
  8. Chang C.-C., Zeng J.-X., Lan S.-M., Uen W.-Y., Liao S.-M., Yang T.-N. et al. // Thin Solid Films. 2013. V. 542. P. 119.
  9. Liu C.-W., Dai J.-J., Wu S.-K., Diep N.-Q., Huynh S.-H., Mai T.-T. et al. // Sci. Rep. 2020. V. 10. № 1. P. 12972.
  10. Sakr G.B. // Mater. Sci. Eng. B. 2007. V. 138. № 1. P. 1.
  11. Mahmoud W.E., Al-Ghamdi A.A., Shirbeeny W., Al-Hazmi F.S., Khan S.A. // Superlattices Microstruct. 2013. V. 63. P. 162.
  12. Elamin A.A., Alsulaim G. // Asp. Min. Miner. Sci. 2023. V. 10. № 5. P. 1188.
  13. Jian S.-R., Juang J.-Y., Luo C.-W., Ku S.-A., Wu K.-H. // J. Alloys Compd. 2012. V. 542. P. 124.
  14. Ohyama M., Fujita Y. // Surf. Coatings Technol. 2003. V. 169-170. P. 620.
  15. Kudryashov M., Mochalov L., Nezdanov A., Kornev R., Logunov A., Usanov D. et al. // Superlattices Microstruct. 2019. V. 128. P. 334.
  16. Usanov D., Nezhdanov A., Kudryashov M., Krivenkov I., Markelov A., Trushin V. et al. // J. Non. Non. Cryst. Solids. 2019. V. 513. P. 120.
  17. Sazanova T.S., Mochalov L.A., Logunov A.A., Kudryashov M.A., Fukina D.G., Vshivtsev M.A. et al. // Nanomaterials. 2022. V. 12. № 11. P. 1838.
  18. Minkov D., Angelov G., Nestorov R., Nezhdanov A., Usanov D., Kudryashov M., Mashin A. // Materials (Basel). 2020. V. 13. № 13. P. 2981.
  19. Mochalov L., Logunov A., Kudryashov M., Prokhorov I., Sazanova T., Yunin P. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. № 7. P. 073002.
  20. Ruedy J.E., Gibbs R.C. // Phys. Rev. 1934. V. 46. № 10. P. 880.
  21. Erdevdy M., Markush P., Shpenik O., Zvenihorodsky V. // Eur. Phys. J. D. 2015. V. 69. № 1. P. 17.
  22. Smirnov Y.M. // High Temp. 2006. V. 44. № 5. P. 656.
  23. Shirai T., Reader J., Kramida A.E., Sugar J. // J. Phys. Phys. Chem. Ref. Data. 2007. V. 36. № 2. P. 509.
  24. Mansurov V.G., Galitsyn Y.G., Malin T.V., Thijs S.A., Fedosenko E.V., Kozhukhov A.S. et al. // FTP. 2018. V. 52. № 12. P. 1407.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a plasma-chemical installation for the synthesis of thin GaSe films.

Download (491KB)
3. Fig. 2. Emission spectra of Ar–Se (1), Ar–Ga (2) and Ar–Ga–Se (3) mixtures.

Download (279KB)
4. Fig. 3. Map of the distribution of elemental gallium and selenium on the surface of a film deposited on silicon at a plasma power of 50 W.

Download (548KB)
5. Fig. 4. Diffraction patterns of gallium selenide films deposited at different plasma power values.

Download (256KB)
6. Fig. 5. SEM images of gallium selenide films deposited at different plasma powers: 30 (a), 50 (b) and 70 W (c). Scale bar 200 nm.

Download (679KB)

Copyright (c) 2024 Russian Academy of Sciences