Soil Bacterial Communities in the Zone of Influence of Salt Dump (Solikamsk, Perm Krai)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the method of high-throughput sequencing of the 16S rRNA gene, the taxonomic composition of soil bacterial communities (Technosol and Retisol) near the salt dump of a potassium enterprise (Solikamsk, Perm region) was analyzed. Soil samples without plants and the rhizosphere of plants of the species Calamagrostis epigeios (L.) Roth) from areas located 1–1.5, 8, 780 m and 11 km from the salt dump were studied. It was found that bacteria from the phyla Pseudomonadota, Bacteroidota, Actinomycetota, Acidobacteriota, Verrucomicrobiota and Gemmatimonadota predominated in all soil samples. Halite waste had the greatest impact on the taxonomic composition of bacterial communities on the soils of areas (in the salinity zone) located in the immediate vicinity of the salt dump (1–1.5 m). In soil samples without plants collected in these areas, relative to soils samples without salinity (at a distance of 8, 780 m, 11 km from the salt dump), bacteria of the order “Candidatus Actinomarinales” predominated; the proportion in the bacterial communities of representatives of the phyla Acidobacteriota, Verrucomicrobiota, class Actinobacteria and the Chitinophagaceae family, the proportion of bacteria of the family Xanthomonadaceae increased. In rhizosphere bacterial communities of the plants growing in the salinity zone, the proportion of representatives of the phylum Acidobacteriota and the families Chitinophagaceae, Enterobacteriaceae decreased, and the proportion of the families Xanthomonadaceae and Flavobacteriaceae increased. The influence of the salt dump on the soil bacterial communities from areas located 8 m and 730 m from the salt dump was revealed, manifested in the presence of representatives of the order “Candidatus Actinomarinales” (1.4–1.6%), families Nitrosomonadaceae (3.0–6.1%), Saprospiraceae (1.0–1.9%), the genus Ilumatobacter (1.6–2.8%) and unculturable bacteria of the family Rhodanobacteraceae (1.3–1.5%).

About the authors

A. V. Nazarov

Institute of Ecology and Genetics of Microorganisms – a branch of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: nazarov@iegm.ru
Russian Federation, Perm

Yu. I. Nechaeva

Institute of Ecology and Genetics of Microorganisms – a branch of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: nazarov@iegm.ru
Russian Federation, Perm

E. S. Korsakova

Institute of Ecology and Genetics of Microorganisms – a branch of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: nazarov@iegm.ru
Russian Federation, Perm

A. A. Pyankova

Institute of Ecology and Genetics of Microorganisms – a branch of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: nazarov@iegm.ru
Réunion, Perm

E. G. Plotnikova

Institute of Ecology and Genetics of Microorganisms – a branch of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: nazarov@iegm.ru
Russian Federation, Perm

References

  1. Бабошко А.Ю., Бачурин Б.А. Тяжелые металлы в отходах калийной промышленности // Горный информационно-аналитический бюллетень (научнотехнический журнал). 2009. № 5. С. 369–376.
  2. Ерёмченко О.З., Лымарь О.А. Почвенно-экологические условия зоны солеотвалов и адаптация к ним растений // Экология. 2007. № 1. С. 18–23.
  3. Ерёмченко О.З., Четина О.А., Кусакина М.Г., Шестаков И.Е. Техногенные поверхностные образования зоны солеотвалов и адаптация к ним растений. Пермь: Перм. гос. нац. исслед. ун-т, 2013. 148 с.
  4. Иванова Е.А., Першина Е.В., Кутовая О.В., Сергалиев Н.Х., Нагиева А.Г., Жиенгалиев А.Т., Андронов Е.Е. Сравнительный анализ микробных сообществ контрастных почвенных типов в условиях различных фитоценозов // Экология. 2018. № 1. C. 34–44.
  5. Копылов И.С. Геоэкология, гидрогеология и инженерная геология Пермского края. Пермь: Перм. гос. нац. исслед. ун-т, 2021. 501 с.
  6. Коротаев Н.Я. Почвы Пермской области. Пермь: Пермское книжное изд-во, 1962. 277 с.
  7. Корсакова Е.С., Ананьина Л.Н., Назаров A.B., Бачурин В.А., Плотникова Е.Г. Разнообразие бактерий семейства Halomonadaceae района разработок Верхнекамского месторождения солей // Микробиология. 2013. Т. 82. № 2. С. 247–250.
  8. Кузнецова А.И., Иванова Е.А., Самылина О.С., Курбанова Ф.Г., Груздев Д.С., Канапацкий Т.А., Пименов Н.В. Прокариотные сообщества засоленных почв Приэльтонья в почвенной катене вдоль реки Хары // Микробиология. 2020. № 6. С. 658–674.
  9. Кутовая О.В., Лебедева М.П., Тхакахова А.К., Иванова Е.А., Андронов Е.Е. Метагеномная характеристика биологического разнообразия крайнеаридных пустынных почв Казахстана // Почвоведение. 2015. № . 5. С. 554–554.
  10. Лопатовская О.Г., Сугаченко А.А. Мелиорация почв. Засоленные почвы. Иркутск: Иркутский гос. ун-т, 2010. 101 с.
  11. Методы почвенной микробиологии и биохимии / Под ред. Звягинцева Д.Г. М.: Изд-во Моск. ун-та, 1991. 303 с.
  12. Налиухин А.Н., Хамитова С.М., Глинушкин А.П., Авдеев Ю.М., Снетилова В.С., Лактионов Ю.В., Белозеров Д.А. Изменение метагенома прокариотного сообщества как показатель плодородия пахотных дерново-подзолистых почв при применении удобрений // Почвоведение. 2018. № 3. С. 331–337.
  13. Першина Е.В., Тамазян Г.С., Дольник А.С., Пинаев А.Г., Сергалиев Н.Х., Андронов Е.Е. Изучение структуры микробного сообщества засоленных почв с использованием высокопроизводительного секвенирования // Экологическая генетика. 2012. № 2. С. 32–40.
  14. Практикум по агрохимии / Под ред. Минеева В.Г. М.: Изд-во Моск. ун-та, 2001. 689 с.
  15. Чернов Т.И., Тхакахова А.К., Лебедева М.П., Железова А.Д., Бгажба Н.А., Кутовая О.В. Микробиомы контрастных по засолению почв солонцового комплекса волго-уральского междуречья // Почвоведение. 2018. № 9. С. 1115–1124.
  16. Шкляев А.С., Балков В.А. Климат Пермской области. Пермь: Пермское книжное изд-во, 1963. 163 с.
  17. Andrews S. FastQC: A Quality control tool for high throughput sequence data. UK: Babraham Bioinformatics, Babraham Institute, 2010. 22 p.
  18. Bergmann G.T., Bates S.T., Eilers K.G., Lauber C.L., Caporaso J.G., Walters W.A., Knight R., Fierer N. The under-recognized dominance of Verrucomicrobia in soil bacterial communities // Soil Biol. Biochem. 2011. V. 43. P. 1450–1455. https://doi.org/10.1016/j.soilbio.2011.03.012
  19. Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin // Microbiome. 2018. V. 6. P. 1–17. https://doi.org/10.1186/s40168-018-0470-z
  20. Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Caporaso J.G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 // Nat. Biotechnol. 2019. V. 37. P. 852–857. https://doi.org/10.1038/s41587-019-0209-9
  21. Callahan B.J. DADA2: High-resolution sample inference from Illumina amplicon data // Nature methods. 2016. V. 13. P. 581–583. https://doi.org/10.1038/nmeth.3869
  22. Canfora L., Bacci G., Pinzari F., Lo Papa G., Dazzi C., Benedetti A. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil // PLos ONE. 2014. V. 9. P. e106662. https://doi.org/10.1371/journal.pone.0106662
  23. Dhondge H.V., Barvkar V.T., Paul D., Dastager S.G., Pable A.A., Nadaf A.B. Exploring the core microbiota in scented rice (Oryza sativa L.) rhizosphere through metagenomics approach // Microbiol. Res. 2022. V. 263. P. 127157. https://doi.org/10.1016/j.micres.2022.127157
  24. Fierer N., Jackson J.A., Vilgalys R., Jackson R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays // Appl. Environ. Microbiol. 2005. V. 71. P. 4117–4120.
  25. Hernandez E.G., Baraza E., Smit C., Berg M.P., Salles J.F. Salt Marsh Elevation Drives root microbial composition of the native invasive grass Elytrigia atherica // Microorganisms. 2020. V. 8. P. 1619. https://doi.org/10.3390/microorganisms8101619
  26. Högfors-Rönnholm E., Christel S., Lillhonga T., Engblom S., Österholm P., Dopson M. Biodegraded peat and ultrafine calcium carbonate result in retained metals and higher microbial diversities in boreal acid sulfate soil // Soil Ecol. Lett. 2020. V. 2. P. 120–130. https://doi.org/10.1007/s42832-020-0039-1
  27. Iranzo J., Rodriguez-Valera F. Genomes of the “Candidatus Actinomarinales” order: highly streamlined marine epipelagic Actinobacteria // Msystems. 2020. V. 6. P. 1110–1128. https://doi.org/10.1128/mSystems.01041-20.
  28. Kearl J., McNary C., Lowman J. S., Mei C., Aanderud Z.T., Smith S.T., Nielsen B.L. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil // Front. Microbiol. 2019. V. 10. P. 1849. https://doi.org/10.3389/fmicb.2019.01849
  29. Luo Y.J., Xie B.S., Lv X.L., Cai M., Wang Y.N., Cui H.L., Cai H., Wu X.L. Marinobacter shengliensis sp. nov., a moderately halophilic bacterium isolated from oil-contaminated saline soil // Antonie Van Leeuwenhoek. 2015. V. 107. P. 1085–1094. https://doi.org/10.1007/s10482-015-0401-y
  30. Luo J., Zhang Z., Hou Y., Diao F., Hao B., Bao Z., Wang L., Guo W. Exploring Microbial resource of different rhizocompartments of dominant plants along the salinity gradient around the hypersaline Lake Ejinur // Front. Microbiol. 2021. V. 12. P. 698479. https://doi: 10.3389/fmicb.2021.698479
  31. Lynch J.M. The Rhizosphere. Chichester / UK: John Wiley & Sons, 1992. 238 p.
  32. Nadeem S., Bakken L.R., Frostegard A., Gaby J.C., Dörsch P. Contingent effects of liming on N2O-emissions driven by autotrophic nitrification // Front. Environ. Sci. 2020. V. 8. P. 598513. https://doi.org/10.3389/fenvs.2020.598513
  33. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucleic Acids Res. 2013. V. 41. P. D590–D596. https://doi.org/10.1093/nar/gks1219
  34. Rokins D.P., Gopal N.O., Anandham R., Saraswathi R. The impact of different planting systems on the bacterial diversity of rice cultivated in saline soil based on 16s rRNA gene-based metagenomic insights // Agriculture. 2022. V. 12. P. 1624. https://doi.org/10.3390/agriculture12101624
  35. Song T., Liang Q., Du Z., Wang X., Chen G., Du Z., Mu D. Salinity gradient controls microbial community structure and assembly in coastal solar salterns // Genes. 2022. V. 13. P. 385. https://doi.org/10.3390/genes13020385
  36. Soothar M.K., Hamani M, Sardar M.F., Sootahar M.K., Fu Y., Rahim R., Soothar J.K., Bhatti S.M., Abubakar S.A., Gao Y., Sun J. Seedlings rhizosphere microbial community as responded to acidic biochar amendment under saline conditions // Front. Microbiol. V. 12. P. 789235. https://doi.org/10.3389/fmicb.2021.789235.
  37. Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag, 2016. 124 p.
  38. Xie K.H., Deng Y., Zhang S.C., Zhang W.H., Liu J.R., Xie Y.L. Prokaryotic community distribution along an ecological gradient of salinity in surface and subsurface saline soils // Sci Rep. 2017. V. 7. P. 13332. https://doi.org/10.1038/s41598-017-13608-5
  39. Yang J., Li W., Teng D., Yang X., Zhang Y., Li Y. Metagenomic insights into microbial community structure, function, and salt adaptation in saline soils of arid land, China // Microorganisms. 2022. V. 10. P. 2183. https://doi.org/10.3390/microorganisms
  40. Zeng F., Zhu Y., Zhang D., Zhao Z., Li Q., Ma P., Zhang G., Wang Y., Wu S., Guo S., Sun G. Metagenomic analysis of the soil microbial composition and salt tolerance mechanism in Yuncheng Salt Lake, Shanxi Province // Front. Microbiol. 2022. V. 13 P. 1004556. https://doi.org /10.3389/fmicb.2022.1004556
  41. Zhang Y., Sun X., Qian C., Li L., Shang X., Xiao X., Gao Y. Impact of petroleum contamination on the structure of saline soil bacterial communities // Current Microbiology. 2022. V. 79. P. 351. https://doi.org/10.1007/s00284-022-03057-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of bacterial communities of the studied soils and rhizosphere of terrestrial reedgrass plants at the phylum level. Taxa whose abundance does not exceed 1% are marked as Other. Soil samples without plants: 1S, 2S, 3S, 4S, 5S; rhizosphere samples: 1SR, 2SR, 3SR, 4SR, 5SR

Download (245KB)
3. Fig. 2. Predominant bacterial families in soil without plants (25 families characterised by the highest percentage content are shown). The heat map represents the percentage content of families in the tested samples

Download (480KB)
4. Fig. 3. Predominant bacterial families in the rhizosphere of groundselgrass (25 families characterised by the highest percentage content are shown). The heat map shows the percentage content of families in the studied samples

Download (464KB)
5. Supplementary
Download (19KB)

Copyright (c) 2024 Russian Academy of Sciences