Possibility of diagnostics of layered media with interferometric side-view sonar

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method is considered and an algorithm is developed that makes it possible to identify the layered structure of the propagation medium of a probing signal based on strip survey data from an interferometric side-scan sonar (ISSS) with antennas located in a vertical plane. Using the example of mathematical modeling of phase-difference measurements of ISSS for multilayer scattering planes, the capabilities of the proposed algorithm to determine their spatial position are demonstrated in the wave propagation medium. An analysis of the accuracy of calculating the position of scattering layers at heights (depths) and with different slopes was performed. The effectiveness of the method and algorithm for diagnosing the structure of layered media has been confirmed. The effectiveness of the method was tested on experimental data obtained using ISSS.

Full Text

Restricted Access

About the authors

V. I. Kaevitser

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

Russian Federation, Fryazino Moscow oblast, 141190

A. P. Krivtsov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

Russian Federation, Fryazino Moscow oblast, 141190

I. V. Smolyaninov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Author for correspondence.
Email: ilia159@mail.ru

Fryazino branch

Russian Federation, Fryazino Moscow oblast, 141190

A. V. Elbakidze

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

Russian Federation, Fryazino Moscow oblast, 141190

References

  1. Захаров А.И., Яковлев О.И., Смирнов В.М. Спутниковый мониторинг земли: Радиолокационное зондирование поверхности. М.: Либрокон, 2013.
  2. Арманд Н.А. // РЭ. 1995. Т. 40. № 3. С. 357.
  3. Armand N.A., Polyakov V.M. Radio propagation and remote sensing of the environment. N.Y.: CRC Press, 2005.
  4. Андреева И.Б // Акуст. журн. 1999. Т. 45. № 4. С. 437.
  5. Морозов А.Н., Лемешко Е.М., Федоров С.В. // Акуст. журн. 2017.Т. 63. № 5. С. 513.
  6. Бреховских Л.М. Волны в слоистых средах. М.: АН СССР, 1957.
  7. Kaevitser V.I., Razmanov V.M. // Physics-Uspekhi (Advances in Phys. Sci.). 2009. V. 179. № 2. P. 218.
  8. Кривцов А.П., Смольянинов И.В., Элбакидзе А.В., Степанов А.В. // Журн. радиоэлектроники.2017. № 4. http://jre.cplire.ru/jre/apr17/2/text.pdf
  9. Каевицер В.И., Кривцов А.П., Смольянинов И.В., Элбакидзе А.В. // Журн. радиоэлектроники.2022. № 10. http://jre.cplire.ru/jre/oct22/7/text.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of surveying the underlying surface using a side-looking interferometer.

Download (87KB)
3. Fig. 2. Example of phase difference obtained by IGBT.

Download (284KB)
4. Fig. 3. Dependence of the interferometric phase difference on the slant range for the air defense missile system at depths of 20 (a) and 100 m (b).

Download (128KB)
5. Fig. 4. Result of modeling correlation processing for flat, horizontal SAMs at depths of 20 and 100 m.

Download (54KB)
6. Fig. 5. Result of modeling the normalized two-dimensional correlation function depending on the depth H and angle β; model layer depth is 100 m, interferometer base d/ λ = 20.

Download (74KB)
7. Fig. 6. Result of modeling correlation processing for a flat ZRS at a depth of 100 m (section at angle β= 5°).

Download (76KB)
8. Fig. 7. Result of two-dimensional correlation processing of experimental measurements of the IGBT depending on the depth H and the angle of inclination β.

Download (62KB)

Copyright (c) 2024 Russian Academy of Sciences