Possibility of diagnostics of layered media with interferometric side-view sonar

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method is considered and an algorithm is developed that makes it possible to identify the layered structure of the propagation medium of a probing signal based on strip survey data from an interferometric side-scan sonar (ISSS) with antennas located in a vertical plane. Using the example of mathematical modeling of phase-difference measurements of ISSS for multilayer scattering planes, the capabilities of the proposed algorithm to determine their spatial position are demonstrated in the wave propagation medium. An analysis of the accuracy of calculating the position of scattering layers at heights (depths) and with different slopes was performed. The effectiveness of the method and algorithm for diagnosing the structure of layered media has been confirmed. The effectiveness of the method was tested on experimental data obtained using ISSS.

Texto integral

Acesso é fechado

Sobre autores

V. Kaevitser

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

Rússia, Fryazino Moscow oblast, 141190

A. Krivtsov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

Rússia, Fryazino Moscow oblast, 141190

I. Smolyaninov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Autor responsável pela correspondência
Email: ilia159@mail.ru

Fryazino branch

Rússia, Fryazino Moscow oblast, 141190

A. Elbakidze

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: ilia159@mail.ru

Fryazino branch

Rússia, Fryazino Moscow oblast, 141190

Bibliografia

  1. Захаров А.И., Яковлев О.И., Смирнов В.М. Спутниковый мониторинг земли: Радиолокационное зондирование поверхности. М.: Либрокон, 2013.
  2. Арманд Н.А. // РЭ. 1995. Т. 40. № 3. С. 357.
  3. Armand N.A., Polyakov V.M. Radio propagation and remote sensing of the environment. N.Y.: CRC Press, 2005.
  4. Андреева И.Б // Акуст. журн. 1999. Т. 45. № 4. С. 437.
  5. Морозов А.Н., Лемешко Е.М., Федоров С.В. // Акуст. журн. 2017.Т. 63. № 5. С. 513.
  6. Бреховских Л.М. Волны в слоистых средах. М.: АН СССР, 1957.
  7. Kaevitser V.I., Razmanov V.M. // Physics-Uspekhi (Advances in Phys. Sci.). 2009. V. 179. № 2. P. 218.
  8. Кривцов А.П., Смольянинов И.В., Элбакидзе А.В., Степанов А.В. // Журн. радиоэлектроники.2017. № 4. http://jre.cplire.ru/jre/apr17/2/text.pdf
  9. Каевицер В.И., Кривцов А.П., Смольянинов И.В., Элбакидзе А.В. // Журн. радиоэлектроники.2022. № 10. http://jre.cplire.ru/jre/oct22/7/text.pdf

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Geometry of surveying the underlying surface using a side-looking interferometer.

Baixar (87KB)
3. Fig. 2. Example of phase difference obtained by IGBT.

Baixar (284KB)
4. Fig. 3. Dependence of the interferometric phase difference on the slant range for the air defense missile system at depths of 20 (a) and 100 m (b).

Baixar (128KB)
5. Fig. 4. Result of modeling correlation processing for flat, horizontal SAMs at depths of 20 and 100 m.

Baixar (54KB)
6. Fig. 5. Result of modeling the normalized two-dimensional correlation function depending on the depth H and angle β; model layer depth is 100 m, interferometer base d/ λ = 20.

Baixar (74KB)
7. Fig. 6. Result of modeling correlation processing for a flat ZRS at a depth of 100 m (section at angle β= 5°).

Baixar (76KB)
8. Fig. 7. Result of two-dimensional correlation processing of experimental measurements of the IGBT depending on the depth H and the angle of inclination β.

Baixar (62KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024