Флуоресцентные наноматериалы из нанокристаллической целлюлозы

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Флуоресцирующие наносистемы, содержащие углеродные квантовые точки (УКТ), получены одностадийным гидротермальным методом с использованием двух типов нанокристаллической целлюлозы (НКЦ): частиц с составом поверхности, близким к нативной целлюлозе (Н-НКЦ), и частиц с сульфатированной поверхностью (С-НКЦ). Наносистемы были охарактеризованы с помощью ультрафиолетовой спектроскопии, инфракрасной спектроскопии с преобразованием Фурье, анализа динамического светорассеяния и флуоресцентной микроскопии. ζ-Потенциал золей составляет от –9.4 до –22.4 мВ для УКТ/Н-НКЦ и –18.3 мВ для УКТ/С-НКЦ. Золи углеродных наночастиц имеют ярко-синее свечение при воздействии ультрафиолетового излучения и необычную флуоресценцию, не зависящую от возбуждения, с квантовым выходом излучения 8.70% для УКТ/Н-НКЦ и 0.84% для УКТ/С-НКЦ. Полученные наноматериалы проявляют высокую антирадикальную активность в тесте с 2,2-дифенил-1-пикрилгидразилом.

Texto integral

Acesso é fechado

Sobre autores

Анна Белых

Институт химии ФИЦ Коми научного центра Уральского отделения РАН

Autor responsável pela correspondência
Email: anna407@rambler.ru
ORCID ID: 0009-0001-6607-0621

к.т.н.

Rússia, 167000, г. Сыктывкар, ул. Первомайская, д. 48

Юлия Друзь

Институт химии ФИЦ Коми научного центра Уральского отделения РАН

Email: anna407@rambler.ru
ORCID ID: 0000-0002-0119-5503
Rússia, 167000, г. Сыктывкар, ул. Первомайская, д. 48

Василий Михайлов

Институт химии ФИЦ Коми научного центра Уральского отделения РАН

Email: anna407@rambler.ru
ORCID ID: 0000-0003-1544-6593

к.х.н.

Rússia, 167000, г. Сыктывкар, ул. Первомайская, д. 48

Петр Ситников

Институт химии ФИЦ Коми научного центра Уральского отделения РАН

Email: anna407@rambler.ru
ORCID ID: 0000-0002-9937-9801

к.х.н.

Rússia, 167000, г. Сыктывкар, ул. Первомайская, д. 48

Михаил Торлопов

Институт химии ФИЦ Коми научного центра Уральского отделения РАН

Email: anna407@rambler.ru
ORCID ID: 0000-0002-0991-906X

к.х.н.

Rússia, 167000, г. Сыктывкар, ул. Первомайская, д. 48

Оксана Шевченко

Институт биологии ФИЦ Коми научного центра Уральского отделения РАН

Email: anna407@rambler.ru
ORCID ID: 0000-0001-5331-3201

к.б.н.

Rússia, 167982, г. Сыктывкар, ГСП-2, ул. Коммунистическая, д. 28

Bibliografia

  1. Ozyurt D., Kobaisi M. A., Hocking R. K., Fox B. Properties, synthesis, and applications of carbon dots: A review // Carbon Trends. 2023. V. 12. P. 1–27. https://doi.org/10.1016/j.cartre.2023.100276
  2. Yang G., Wan X., Su Y., Zeng X., Tang J. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment // J. Mater. Chem. A. 2016. V. 4. N 33. P. 12841–12849. https://doi.org/10.1039/C6TA05943K
  3. Zou W., Ma X., Zheng P. Preparation and functional study of cellulose/carbon quantum dot composites // Cellulose. 2020. V. 27. N 4. P. 2099–2113. https://doi.org/10.1007/s10570-019-02926-8
  4. Sachdev A., Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents // Analyst. 2015. V. 140. N 12. P. 4260–4269. https://doi.org/10.1039/c5an00454c
  5. Bayat A., Masoum S., Hosseini E. S. Natural plant precursor for the facile and eco-friendly synthesis of carbon nanodots with multifunctional aspects // J. Mol. Liq. 2019. V. 281 P. 134–140. https://doi.org/10.1016/j.molliq.2019.02.074
  6. Shen J., Shang S., Chen X., Wang D., Cai Y. Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr (VI) detection // Sens. Actuators. 2017. V. 248. P. 92–100. http://dx.doi.org/10.1016/j.snb.2017.03.123
  7. Rizzo C., Arcudi F., Đorđević L., Dintcheva N. T., Noto R., DʹAnna F., Prato M. Nitrogen-doped carbon nanodots-ionogels: Preparation, characterization, and radical scavenging activity // ACS Nano. 2018. V. 12. P. 1296–1305. https://doi.org/10.1021/acsnano.7b07529
  8. Sevgi K., Tepe B., Sarikurkcu C. Antioxidant and DNA damage protection potentials of selected phenolic acids // Food Chem. Toxicol. 2015. V. 77. Р. 12–21. https://doi.org/10.1016/j.fct.2014.12.006
  9. Bao H., Liu Y., Li H., Qi W., Sun K. Luminescence of carbon quantum dots and their application in biochemistry // Heliyon. 2023. V. 9. P. 1–22. https://doi.org/10.1016/j.heliyon.2023.e20317
  10. Molaei M. J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence // Talanta. 2019. V. 196. P. 456–478. https://doi.org/10.1016/j.talanta.2018.12.042
  11. Kumara B. N., Kalimuthu P., Prasad K. S. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review // Anal. Chim. Acta. 2023. V. 1268. P. 1–27. https://doi.org/10.1016/j.aca.2023.341430
  12. Rawat P., Nain P., Sharma S., Sharma P. K., Malik V., Majumder S., Verma V. P., Rawat V., Rhyee J. S. An overview of synthetic methods and applications of photoluminescence properties of carbon quantum dots // Luminescence. 2023. V. 38. N 7. P. 845–866. https://doi.org/10.1002/bio.4255
  13. Kazaryan S. A., Nevolin V. N., Starodubtsev N. F. Synthesis and study of new luminescent carbon particles with high emission quantum yield // Inorg. Mater.: Appl. Res. 2019. V. 10. P. 271–284. https://doi.org/10.1134/S2075113319020217
  14. Hassanvand Z., Jalali F., Nazari M., Parnianchi F., Santoro C. Carbon nanodots in electrochemical sensors and biosensors: A review // ChemElectroChem. 2021. V. 8. N 1. P. 15–35. https://doi.org/10.1002/celc.202001229
  15. Hill S., Galan M. C. Fluorescent carbon dots from mono-and polysaccharides: Synthesis, properties and applications // Beilstein J. Org. Chem. 2017. V. 13. N 1. P. 675–693. https://doi.org/10.3762/bjoc.13.67
  16. Choi Y., Zheng X. T., Tan Y. N. Bioinspired carbon dots (biodots): Emerging fluorophores with tailored multiple functionalities for biomedical, agricultural and environmental applications // Mol. Syst. Des. Eng. 2020. V. 5. N 1. P. 67–90. https://doi.org/10.1039/C9ME00086K
  17. da Silva Souza D. R., Caminhas L. D., de Mesquita J. P., Pereira F. V. Luminescent carbon dots obtained from cellulose // Mater. Chem. Phys. 2018. V. 203. P. 148–155. https://doi.org/10.1016/j.matchemphys.2017.10.001
  18. Torlopov M. A., Udoratina E. V., Martakov I. S., Sitnikov P. A. Cellulose nanocrystals prepared in H3PW12O40/acetic acid system // Cellulose. 2017. V. 24. N 5. P. 2153–2162. https://doi.org/10.1007/s10570-017-1256-3
  19. Boluk Y., Lahiji R., Zhao L., McDermott M. T. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC) // Colloids Surf. Physicochem. Eng. Asp. 2011. V. 377. N 1–3. P. 297–303. http://dx.doi.org/10.1016/j.colsurfa.2011.01.003
  20. Liu H., Zhong X., Pan Q., Zhang Y., Deng W., Zou G., Hou H., Ji X. A review of carbon dots in synthesis strategy // Coord. Chem. Rev. 2024. V. 498. P. 1–19. https://doi.org/10.1016/j.ccr.2023.215468
  21. Suner S. S., Sahiner M., Ayyala R. S., Bhethanabotla V. R., Sahiner N. Versatile fluorescent carbon dots from citric acid and cysteine with antimicrobial, anti-biofilm, antioxidant, and AChE enzyme inhibition capabilities // J. Fluoresc. 2021. V. 31. N 6. P. 1705–1717. https://doi.org/10.1007/s10895-021-02798-x
  22. Wang J., Zheng J., Yang Y., Liu X., Qiu J., Tian Y. Tunable full-color solid-state fluorescent carbon dots for light emitting diodes // Carbon. 2022. V. 190. P. 22–31. https://doi.org/10.1016/j.carbon.2022.01.001
  23. Hu D., Lin K. H., Xu Y., Kajiyama M., Neves M. A., Ogawa K., Enomae T. Microwave-assisted synthesis of fluorescent carbon dots from nanocellulose for dual-metal ion-sensor probe: Fe (III) and Mn (II) // Cellulose. 2021. V. 28. N 15. P. 9705–9724. https://doi.org/10.1007/s10570-021-04126-9
  24. Shen P., Gao J., Cong J., Liu Z., Li C., Yao J. Synthesis of cellulose-based carbon dots for bioimaging // ChemistrySelect. 2016. V. 1. N 7. P. 1314–1317. https://doi.org/10.1002/slct.201600216
  25. Liu Z., Chen M., Guo Y., Zhou J., Shi Q., Sun R. Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe 3+ ions detection and bioimaging // Chem. Eng. J. 2020. V. 384. P. 1–14. https://doi.org/10.1016/j.cej.2019.123260
  26. Zhu M., Xiong J., Li S., Chen Q. Synthesis of nanocellulose based nitrogen doped carbon quantum dots with high fluorescence quantum yields for multifunctional applications // Starch-Stärke. 2023. V. 75. N 11–12. P. 1–11. https://doi.org/10.1002/star.202300005
  27. Rani U. A., Ng L. Y., Ng C. Y., Mahmoudi E. A review of carbon quantum dots and their applications in wastewater treatment // Adv. Colloid Interface Sci. 2020. V. 278. P. 1–24. https://doi.org/10.1016/j.cis.2020.102124
  28. Jiang Z., Krysmann M. J., Kelarakis A., Koutnik P., Anzenbacher P., Roland P. J., Ellingson R. Understanding the photoluminescence mechanism of carbon dots // MRS Adv. 2017. V. 2. N 51. P. 2927–2934. https://doi.org/10.1557/adv.2017.461
  29. Zhao Z., Guo Y., Zhang T., Ma J., Li H., Zhou J., Wang Z., Sun R. Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink // Int. J. Biol. Macromol. 2020. V. 164. P. 4289–4298. https://doi.org/10.1016/j.ijbiomac.2020.08.243
  30. Chung S., Revia R. A., Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy // Advanced Mater. 2021. V. 33. N 22. P. 1–26. https://doi.org/10.1002/adma.201904362
  31. Khan S., Verma N. C., Chethana, Nandi C. K. Carbon dots for single-molecule imaging of the nucleolus // ACS Appl. Nano Mater. 2018. V. 1. N 2. P. 483–487. https://doi.org/10.1021/acsanm.7b00175
  32. Hu Z., Ballinger S., Pelton R., Cranston E. D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions // J. Colloid Interface Sci. 2015. V. 439. P. 139–148. https://doi.org/10.1016/j.jcis.2014.10.034
  33. Schneider J., Reckmeier C. J., Xiong Y., von Seckendorff M., Susha A. S., Kasák P., Rogach A. L. Molecular fluorescence in citric acid-based carbon dots // J. Phys. Chem. C. 2017. V. 121. N 3. P. 2014–2022. https://doi.org/10.1021/acs.jpcc.6b12519
  34. Meierhofer F., Dissinger F., Weigert F., Jungclaus J., Müller-Caspary K., Waldvogel S. R., Resch-Genger U., Voss T. Citric acid based carbon dots with amine type stabilizers: pH-specific luminescence and quantum yield characteristics // J. Phys. Chem. C. 2020. V. 124. N 16. P. 8894–8904. https://doi.org/10.1021/acs.jpcc.9b11732

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Micrograph of native nanocrystalline cellulose.

Baixar (92KB)
3. Fig. 2. Fourier transform IR spectra. 1 — native nanocellulose, 2 — carbon dots from native nanocellulose, 3 — carbon dots from sulfated nanocellulose, 4 — carbon dots from citric acid.

Baixar (82KB)
4. Fig. 3. Absorption spectra of carbon dots obtained from: 1 - citric acid, 2 - sulfated nanocellulose, 3 - native nanocellulose.

Baixar (39KB)
5. Fig. 4. Fluorescence spectra of carbon dots obtained from: a — citric acid at excitation wavelengths (nm): 1 — 300, 2 — 360, 3 — 370, 4 — 390, 5 — 410, 6 — 430, 7 — 450; b — native cellulose (hydrothermal method) at excitation wavelengths (nm): 1 — 310, 2 — 330, 3 — 350, 4 — 360, 5 — 370, 6 — 390; c — sulfated nanocellulose (hydrothermal method) at excitation wavelengths (nm): 1 — 310, 2 — 330, 3 — 350, 4 — 360, 5 — 370, 6 — 390; g — native cellulose (microwave method) at excitation wavelengths (nm): 1 — 300, 2 — 310, 3 — 330, 4 — 350, 5 — 360, 6 — 370, 7 — 390, 8 — 410, 9 — 430.

Baixar (165KB)
6. Fig. 5. Comparative evaluation of the antiradical activity of carbon dots from nanocellulose at a concentration of 3.6–36 mg l–1 in a test with 2,2-diphenyl-1-picrylhydrazyl. UKT/S-NCC — carbon quantum dots from sulfated nanocellulose, UKT/N-NCC — carbon quantum dots from native nanocellulose.

Baixar (52KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024