ON THE MULTIPLICATIVE PROPERTY OF DEFINING POLYNOMIALS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The roots of the indicial polynomial constructed for a given linear ordinary differential operator provide information about the features of solutions of the corresponding homogeneous differential equation. Operators and equations whose coefficients are formal Laurent series are discussed. Solutions of the same kind are considered. These assumptions describe the structure of the indicial polynomial of the product of differential operators. This structural (multiplicative) property is preserved in the case of converging series.

Sobre autores

S. Abramov

Dorodnitsyn Computing Center, Federal Research Center Computer Science and Control, RAS

Email: sergeyabramov@mail.ru
Moscow, Russia

Bibliografia

  1. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: Изд-во иностр. лит., 1958.
  2. Туганбаев А.А. Теория колец. Арифметические модули и кольца. М.: МЦНМО, 2009.
  3. Картан А. Элементарная теория аналитических функций одного и нескольких комплексных переменных. М.: Изд-во иностр. лит., 1963.
  4. Henrici P. Applied and computational complex analysis. Vol. 1. John Willey & Sons, 1974.
  5. Abramov S. EG—eliminations // J. of Difference Equations and Applications. 1999. V 5. P. 393—433.
  6. Abramov S., Petkovsek M., Ryabenko A. Special formal series solutions of linear operator equations // Discrete Math. 2000. V 210. P 3-25.
  7. Maple online help: http://www.maplesoft.com/support/help/

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024