О МУЛЬТИПЛИКАТИВНОМ СВОЙСТВЕ ОПРЕДЕЛЯЮЩИХ ПОЛИНОМОВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Корни определяющего полинома, построенного для данного линейного обыкновенного дифференциального оператора, дают информацию об особенностях решений соответствующего однородного дифференциального уравнения. Обсуждаются операторы и уравнения, коэффициенты которых являются формальными лорановыми рядами. Такого же вида рассматриваются и решения. В этих предположениях описывается структура определяющего полинома произведения дифференциальных операторов. Это структурное (мультипликативное) свойство сохраняется и в случае сходящихся рядов. Библ. 8.

Об авторах

С. А Абрамов

ВЦ ФИЦ ИУ РАН

Email: sergeyabramov@mail.ru
Москва, Россия

Список литературы

  1. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: Изд-во иностр. лит., 1958.
  2. Туганбаев А.А. Теория колец. Арифметические модули и кольца. М.: МЦНМО, 2009.
  3. Картан А. Элементарная теория аналитических функций одного и нескольких комплексных переменных. М.: Изд-во иностр. лит., 1963.
  4. Henrici P. Applied and computational complex analysis. Vol. 1. John Willey & Sons, 1974.
  5. Abramov S. EG—eliminations // J. of Difference Equations and Applications. 1999. V 5. P. 393—433.
  6. Abramov S., Petkovsek M., Ryabenko A. Special formal series solutions of linear operator equations // Discrete Math. 2000. V 210. P 3-25.
  7. Maple online help: http://www.maplesoft.com/support/help/

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024