ON THE MULTIPLICATIVE PROPERTY OF DEFINING POLYNOMIALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The roots of the indicial polynomial constructed for a given linear ordinary differential operator provide information about the features of solutions of the corresponding homogeneous differential equation. Operators and equations whose coefficients are formal Laurent series are discussed. Solutions of the same kind are considered. These assumptions describe the structure of the indicial polynomial of the product of differential operators. This structural (multiplicative) property is preserved in the case of converging series.

About the authors

S. A Abramov

Dorodnitsyn Computing Center, Federal Research Center Computer Science and Control, RAS

Email: sergeyabramov@mail.ru
Moscow, Russia

References

  1. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: Изд-во иностр. лит., 1958.
  2. Туганбаев А.А. Теория колец. Арифметические модули и кольца. М.: МЦНМО, 2009.
  3. Картан А. Элементарная теория аналитических функций одного и нескольких комплексных переменных. М.: Изд-во иностр. лит., 1963.
  4. Henrici P. Applied and computational complex analysis. Vol. 1. John Willey & Sons, 1974.
  5. Abramov S. EG—eliminations // J. of Difference Equations and Applications. 1999. V 5. P. 393—433.
  6. Abramov S., Petkovsek M., Ryabenko A. Special formal series solutions of linear operator equations // Discrete Math. 2000. V 210. P 3-25.
  7. Maple online help: http://www.maplesoft.com/support/help/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences