Effect of particles of the young layer on the length ozone depletion chains in the atmosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of calculations of the length of ozone destruction chains in the lower stratosphere in HOx-, NOx- and ClOx - catalytic cycles, taking into account heterogeneous chemical reactions (GHR) involving particles of the Young layer. Taking into account these reactions leads to a change in the type of high-altitude profiles of the length of the chains in these cycles, calculated in the approximation of the absence of GHR. At the lower boundary of the Young layer, a degeneration of the chain destruction of ozone in the NOₓ cycle is observed, caused by a sharp decline in the concentrations of components of this family due to the capture of gas molecules N₂O₅. At the same time, there is an increase in the chain length in the HOx cycle by more than an order of magnitude due to a decrease in the concentrations of OH and HO₂ radicals and, as a result, a decrease in the rate of chain breakage with their participation. At high altitudes, the length of the ozone destruction chains, taking into account GHR, on the contrary, are higher; the acceleration of the destruction of O₃ by chain carriers in HOx and ClOx cycles affects. The increase in their concentrations is due to the reduced content of NO and NO₂ in the air. The considered effect of GHR practically disappears at the upper boundary of the Young layer due to the evaporation of particles.

Full Text

Restricted Access

About the authors

I. K. Larin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: iklarin@narod.ru
Russian Federation, Moscow

G. B. Pronchev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: iklarin@narod.ru
Russian Federation, Moscow

A. N. Yermakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: iklarin@narod.ru
Russian Federation, Moscow

References

  1. Andreae M.O., Jones C.D., Cox P.M. // Nature.2005. V. 435. № 7046. P. 1187; https://doi.org/10.1038/nature03671
  2. Kulmala M., Pirjola U., Mäkelä U. // Nature. 2000. V. 404. № 6773. P. 66; https://doi.org/10.1038/35003550
  3. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016.
  4. Salawitch R.J., Wofsy S.C., Wennberg P.O. et al. // Geophys. Res. Let. 1994. V. 21. № 23. P. 2547; https://doi.org/10.1029/94GL02781
  5. Larin I.K. // Russ. J. Phys. Chem. B. 2017. V. 11. № 2. P. 375; https://doi.org/10.1134/S1990793117020075
  6. Larin I.K., Ermakov A.N., Aloyan A.E. // J. Phys. Chem. B. 2016. V. 10. № 5. P. 860; https://doi.org/10.1134/S1990793116050079
  7. Kumpanenko I.V., Ivanova N.A., Dyubanov M.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. № 5. P. 868; https://doi.org/10.1134/S1990793121040047
  8. Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 234; https://doi.org/10.1134/S1990793123010141
  9. Eganov A.A., Kardonsky D.A., Sulimenkov I.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 503; https://doi.org/10.1134/S1990793123020240
  10. Borrmann S., Solomon S., Dye, J.E. et al. // J. Geophys. Res. 1997. V. 102. D3. P. 3639; https://doi.org/10.1029/96JD02976
  11. Lary. D.J. // J. Geophys. Res. 1997. V. 102. D17. P. 21515; https://doi.org/10.1029/97JD00912.
  12. Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project. Report. WMO, Geneva, 1995.
  13. Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Third revised and enlarged edition. Montreal. Canada.: Springer, 2005.
  14. Jacob D.J. Introduction to Atmospheric Chemistry. Princeton: University Press, 1999.
  15. Shimazaki T. Minor constituents in the middle atmosphere. Tokyo, Japan: Terra Scientific Publishing Company, 1985.
  16. Junge C.E., Chagnon C.W., Manson J.E. // J. Geophys. Res. 1961. V. 66. № 7. P. 2163; https://doi.org/10.1029/JZ066i007p₀2163
  17. Turco R.P., Whitten R.C., Toon O.B. // Rev. Geophys. 1982. V. 20. № 2. P. 233; https://doi.org/10.1029/RG020i002p₀0233
  18. Larin I.K. // Atmos. Clim. Sci. 2013. V. 3. № 1. P. 141; https://doi.org/10.4236/acs.2013.310¹⁶
  19. Eremina I.D., Chubarova N.E., Aloyan A.E., Arutyunyan V.O., Larin I.K., Yermakov A.N. // Izv. Atmos. Ocean. Phys. 2015. V. 51. № 6. P. 624; https://doi.org/10.1134/S0001433815050047
  20. Voigt C., Schlager H., Luo B.P. et al. // Atmos. Chem. Phys. 2005. V. 5. P. 1371; https://doi.org/10.5194/acp-5-1371-2005
  21. http://cdp.ucar.edu/browse/browse.htm?uri=http://dataportal.ucar.edu/metadata/acd/software/Socrates/Socrates.thredds.xml
  22. Schwartz S.E., Freiberg J.E. // Atmos. Envir. A. 1981. V. 15. № 7. P. 1129; https://doi.org/10.1016/0004-6981(81)90303-6
  23. Myhre G., Berglen T.F., Myhre C.L.E. et al. // Tellus. 2004. V. 56B. P. 294; https://doi.org/10.1111/j.1600-0889.2004.00106.x
  24. http://www.aim.env.uea.ac.uk/aim/aim.php
  25. Shi Q., Jayne J.T., Kolb C.E. et al. // J. Geophys. Res. 2001. V. 106. P. 24259; https://doi.org/10.1029/2000jd000181
  26. Hanson D.R., Ravishankara A.R., Solomon S. // J. Geophys. Res A. 1994. V. 99. D2. P. 3615; https://doi.org/10.1029/93JD02932
  27. Larin I.K., Ermakov A.N., Aloyan A.E. // J. Phys. Chem. B. 2021. V. 15. № 3. P. 577; https://doi.org/10.1134/S199079312103009X
  28. Carslaw K.S., Peter T., Clegg S.L. // Rev. Geophys. 1997. V. 35. № 2. P. 125; https://doi.org/10.1029/97RG00078

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculated altitude profiles of relative concentrations [xi(gas + HCR)]/[xi(gas)] of chain carriers of the HOx (OH(g), HO₂(g)), NOₓ (NO(g), NO₂(g)) and ClOx (ClO(g)) families, as well as N₂O₅(g) taking into account heterogeneous chemical reactions involving the Junge aerosol layer in the lower stratosphere for the conditions of June 1995 at 50° N (see text). The inset shows a comparison of the altitude profiles of chain termination rates (Wd, ᵢ) in these cycles, calculated taking into account HCR (solid curves) and without them (dashed curves).

Download (164KB)
3. Fig. 2. Calculated taking into account heterogeneous chemical reactions involving particles of the Junge layer in the lower stratosphere, the altitude profiles of the chain length (v) of ozone destruction (dark lines) with their profiles calculated taking into account gas-phase reactions in the catalytic HOₓ-, NOₓ- and ClOx-cycles in June 1995 at mid-latitudes – 50° N (see text).

Download (95KB)

Copyright (c) 2024 Russian Academy of Sciences