Влияние частиц слоя юнге на длину цепи разрушения озона в атмосфере
- Авторы: Ларин И.К.1, Прончев Г.Б.1, Ермаков А.Н.1
-
Учреждения:
- Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
- Выпуск: Том 43, № 6 (2024)
- Страницы: 64-71
- Раздел: Химическая физика атмосферных явлений
- URL: https://kld-journal.fedlab.ru/0207-401X/article/view/674937
- DOI: https://doi.org/10.31857/S0207401X24060074
- ID: 674937
Цитировать
Аннотация
В работе приводятся результаты расчетов длины цепей разрушения озона в нижней стратосфере в каталитических HOx-, NOx-, ClOx- циклах с учетом гетерогенных химических реакций (ГХР) с участием частиц слоя Юнге. Учет этих реакций приводит к изменению вида высотных профилей длины цепей в этих циклах, рассчитанных в приближении отсутствия ГХР. На нижней границе слоя Юнге наблюдается вырождение цепного разрушения озона в NOx-цикле, вызванное резким спадом концентраций компонентов этого семейства, обусловленным захватом газовых молекул N₂O₅. При этом наблюдается рост длины цепи в HOx-цикле более чем на порядок величины из-за снижения концентраций радикалов ОН и НО₂ и, как результат, спада скорости обрыва цепей с их участием. На бóльших высотах длины цепей разрушения озона с учетом ГХР, напротив, оказываются выше; сказывается ускорение разрушения O₃ переносчиками цепи в HOx- и ClOx-циклах. Рост их концентраций обусловлен пониженным содержанием в воздухе NO и NO₂. Рассматриваемое влияние ГХР практически исчезает на верхней границе слоя Юнге вследствие испарения частиц.
Ключевые слова
Полный текст

Об авторах
И. К. Ларин
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
Автор, ответственный за переписку.
Email: iklarin@narod.ru
Россия, Москва
Г. Б. Прончев
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
Email: iklarin@narod.ru
Россия, Москва
А. Н. Ермаков
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
Email: iklarin@narod.ru
Россия, Москва
Список литературы
- Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. № 7046. P. 1187; https://doi.org/10.1038/nature03671
- Kulmala M., Pirjola U., Mäkelä U. // Nature. 2000. V. 404. № 6773. P. 66; https://doi.org/10.1038/35003550
- Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016. 1152 p.
- Salawitch R.J., Wofsy S.C., Wennberg P.O. et al. // Geophys. Res. Let. 1994. V. 21. № 23. P. 2547; https://doi.org/10.1029/94GL02781
- Ларин И.К. // Хим. физика. 2017. Т. 36. № 3. С. 87; https://doi.org/10.7868/S0207401X17030074
- Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2016. Т. 35. № 9. С. 76; https://doi.org/10.7868/S0207401X16090077
- Кумпаненко И.В., Иванова Н.А., Дюбанов М.В. и др. // Хим. физика. 2021. Т. 40. № 10. С. 48; https://doi.org/10.31857/S0207401X21070049
- Зеленов В.В., Апарина Е.В. // Хим. физика. 2023, Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
- Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81; https://doi.org/10.31857/S0207401X23040064
- Borrmann S., Solomon S., Dye J.E. et al. // J. Geophys. Res. 1997. V. 102. D3. P. 3639; https://doi.org/10.1029/96JD02976
- Lary D.J. // J. Geophys. Res. 1997. V. 102. D17. Р. 21515; https://doi.org/10.1029/97JD00912
- Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project. Report. WMO, Geneva, 1995.
- Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Third revised and enlarged edition. Montreal. Canada.: Springer, 2005.
- Jacob D.J. Introduction to Atmospheric Chemistry. Princeton: University Press, 1999.
- Shimazaki T. Minor constituents in the middle atmosphere. Tokyo, Japan: Terra Scientific Publishing Company, 1985.
- Junge C.E., Chagnon C.W. Manson J.E. // J. Geophys. Res. 1961. V. 66. № 7. Р. 2163; https://doi.org/10.1029/JZ066i007p₀2163
- Turco R.P., Whitten R.C., Toon O.B. // Rev. Geophys. 1982. V. 20. № 2. P. 233; https://doi.org/10.1029/RG020i002p₀0233
- Larin I.K. // Atmospheric and Climate Sciences. 2013. V.3. № 1. P. 141; https://doi.org/10.4236/acs.2013.310¹⁶
- Eremina I.D., Chubarova N.E., Aloyan A.E., Arutyunyan V.O., Larin I.K., Yermakov A.N. // Izv. Atmos. Ocean. Phys. 2015. Т. 51. № 6. P. 624; https://doi.org/10.1134/S0001433815050047
- Voigt C., Schlager H., Luo B.P. et al. // Atmos. Chem. Phys. 2005. V. 5. № 5. P. 1371; https://doi.org/10.5194/acp-5-1371-2005
- http://cdp.ucar.edu/browse/browse.htm?uri=http://dataportal.ucar.edu/metadata/acd/software/Socrates/Socrates.thredds.xml
- Schwartz S.E., Freiberg J.E. // Atmos. Envir. A. 1981. V. 15. № 7. P. 1129; https://doi.org/10.1016/0004-6981(81)90303-6
- Myhre G., Berglen T.F., Myhre C.L.E. et al. // Tellus. 2004. V. 56B. P. 294; https://doi.org/10.1111/j.1600-0889.2004.00106.x
- http://www.aim.env.uea.ac.uk/aim/aim.php
- Shi Q., Jayne J.T., Kolb C.E. et al. // J. Geophys. Res. 2001. V. 106. P. 24259; https://doi.org/10.1029/2000jd000181
- Hanson D.R., Ravishankara A.R., Solomon S. // J. Geophys. Res A. 1994. V. 99. D2. P. 3615; https://doi.org/10.1029/93JD02932
- Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
- Carslaw K.S., Peter T., Clegg S.L. // Rev. Geophys. 1997. V. 35. № 2. P. 125; https://doi.org/10.1029/97RG00078
Дополнительные файлы
