Random ensembles of particles with pentagonal symmetry: densification and properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper studies the densities and statistical-geometric characteristics of random packings of regular pentagons on a plane. The initial ensemble was generated by random sequential adsorption (RSA). A packing densification algorithm is proposed, which is a modification of the Lubachevsky-Stillinger (LS) method. The final ensemble was obtained by stepwise increasing the linear dimensions of 2-D particles at a fixed density of the square “box”. It is shown that the packing density of the final ensemble for this algorithm is practically independent of the density of the initial ensemble (with a total number of particles of about 104 or more). The maximum packing density of the starting ensemble of regular pentagons obtained by the RSA method was 0.54306 ± 0.00220, which is in good agreement with the literature value of 0.54132. The highest (final) density achieved after compaction of the starting ensemble was 0.8381 ± 0.0020 for pentagons. This value is close to the value found by a similar algorithm for packing hard disks (0.84-0.86). The correlation functions of hard disks and pentagons demonstrate a number of common patterns. At the same time, the “crystallization” of the ensemble of hard disks at relatively high densities close to the maximum achieved is expressed more sharply. At the same time, the “peaks” of the correlation function for pentagons (compared to disks) are expected to have a smaller height and a larger width, a more complex structure. Ensembles of non-convex particles with pentagonal symmetry (such as five-pointed stars) demonstrate significantly lower packing densities and do not compact to partial “crystallization”. A relatively simple algorithm for compacting “starting” random packings of polygons, applied in the work, allows “compacting” two-dimensional ensembles of any polygons (without self-intersections). However, partial ordering and sufficiently high densities (corresponding to the beginning of “crystallization” of the ensemble) are achieved when using it only for convex polygonal particles.

Full Text

Restricted Access

About the authors

A. B. Shubin

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: fortran@list.ru
Russian Federation, Ekaterinburg

References

  1. Brouwers H.J.H. A geometric probabilistic approach to random packing of hard disks in a plane // Soft Matter. 2023. 19. P. 8465–8471.
  2. Atkinson S., Stillinger F.H., Torquato S. Existence of isostatic, maximally random jammed monodisperse hard-disk packings // PNAS. 2014. 111. № 52. P. 18436–18441.
  3. Tian J., Xu Y., Jiao Y., Torquato S. A Geometric-Structure Theory for Maximally Random Jammed Packings // Scientific Reports. 2015. 5. P.16722 (1–9).
  4. Jin Y., Makse H.A. A first-order phase transition defines the random close packing of hard spheres // Physica A. 2010. 389. P. 5362–5379.
  5. Bideau D., Gervois A., Oger L., Troadec J.P. Geometrical properties of disordered packings of hard disks // J. Phys. France. 1986. 47. P. 1697–1707.
  6. Buryachenko V.A., Pagano N.J., Kim R.Y., Spowart J.E. Quantitative description and numerical simulation of random microstructures of composites and their effective elastic moduli // International Journal of Solids and Structures. 2003. 40. № 1. P. 47–72.
  7. Buryachenko V.A. Micromechanics of Heterogeneous Materials. Springer. 2007.
  8. Iwata H., Homma T. Distribution of Coordination Numbers in Random Packing of Homogeneous Spheres // Powder Technology. 1974. 10. № 1–2. P.79–83.
  9. Speedy R.J. On the reproducibility of glasses // J. Chem. Phys. 1994. 100. P. 6684–6691.
  10. Donev A., Torquato S., Stillinger F.H., Connelly R. Jamming in hard sphere and disk packings // J. of Applied Physics. 2004. 95. № 3. P. 989–999.
  11. Onsager L. The Effects of Shape on the Interaction of Colloidal Particles // Annals New-York Academy of Sciences. 1949. 51. P. 627–659.
  12. Browers H.J.H. Random packing fraction of binary similar particles: Onsager’s excluded volume model revisited // Physics – Uspekhi. 2024. 67. № 5. P.510–529.
  13. Ciesla M., Barbasz J. Random packing of regular polygons and star polygons on a flat two-dimensional surface//Physical Review E. 2014. 90. P. 022402.
  14. Ciesla M., Kubala P., Zhang G. Saturated random packing built of arbitrary polygons under random sequential adsorption protocol // Physical Review E. 2019. 100. P. 062901-1-062901-7.
  15. Zhang G. Precise algorithm to generate random sequential adsorption of hard polygons at saturation // Physical Review E. 2018. 97. P. 043311(1–5).
  16. Ciesla M., Kubala P., Moud A.A. Random sequential adsorption of aligned regular polygons and rounded squares: Transition in the kinetics of packing growth // Physical Review E. 2023. 107. P. 054904(1–7).
  17. Lubachevsky B.D., Stillinger F.H. Geometric properties of random disk packings// Journal of Statistical Physics. 1990. 60. № 5/6. P.561–583.
  18. Wang C., Dong K., Yu A. Structural characterization of the packings of granular regular polygons // Physical Review E. 2015. 92. P. 062203(1–12).
  19. Xu Y., Bares J., Zhao Y., Behringer R.P. Jamming Transition: Heptagons, Pentagons, and Discs // EPJ Web of Conferences. 2017. 140. P. 06010(1–4).
  20. Zhao Y., Bares J., Zheng H., Bester C.S., Xu Y., Socolar J.E.S. Behringer R.P. Jamming transition in non-spherical particle systems: pentagons versus disks // Granular Matter. 2019. 21:90. P. 1–8.
  21. Shubin A.B. Concerning the geometric limit of the density of a loose medium modeled by identical spherical particles // J. of Engineering Physics and Thermophysics. 1995. 68. № 4. P. 460–463.
  22. Shubin A.B. The geometric condition for density limits in idealized models of liquids // Russian Journal of Physical Chemistry A. 1996. 70. № 4. P. 711–712.
  23. Shubin A.B., Yatsenko S.P. Geometric constraints for the density limit in the two-dimensional model of liquid // Russian Journal of Physical Chemistry A. 1999. 73. № 1. P. 140–141.
  24. Shubin A.B., Shunyaev K.Yu. Sluchaynyy ansambl’ zhestkikh diskov – predel’naya plotnost’ i statistiko-geometricheskiye svoystva (Random Ensemble of Hard Disks – Limit Density and Statistical-Geometric Properties) // Rasplavy (Melts). 2006. № 5. P. 70—76.
  25. Shubin A.B. Structural Characteristics of a Small Group of Fixed Particles and the Maximum Density of a Random Packing of Hard Spheres // Russian Metallurgy (Metally). 2021. № 2. P. 181–186.
  26. Steurer W. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals // Zeitschrift für Kristallographie-Crystalline Materials. 2004. 219. P. 391–446.
  27. Li M.Z. Correlation Between Local Atomic Symmetry and Mechanical Properties in Metallic Glasses // Journal of Materials Science & Technology. 2014. 30. № 6. P. 551–559.
  28. Fukunaga T., Itoh K., Otomo N., Mori K., Sugiyama M., Kato H., Hasegawa M., Hirata A., Hirotsu Y., Hannon A.C. Voronoi analysis of the structure of Cu–Zr and Ni–Zr metallic glasses // Intermetallics. 2006. 14. P. 893–897.
  29. Yasnikov I.S., Vikarchuk A.A., Denisova D.A., Gryzunova N.N., Tsybuskina I.I. Electrodeposition of Nanostructure Objects with Pentagonal Symmetry // Technical Physics. 2007. 52. № 10. P. 1328–1331.
  30. Yasnikov I.S. On the Problem of the Formation of an Open Sector instead of a Twin Boundary in Electrolytic Pentagonal Small Particles // JETP Letters. 2013. 97. № 9. P. 513–516.
  31. Jiao Y., Torquato S. Maximally random jammed packings of Platonic solids: Hyperuniform long-range correlations and isostaticity // Physical Review E. 2011. 84. P. 041309 (1–7).
  32. Baranau V., Tallarek U. Relaxation times, jamming densities, and ideal glass transition densities for hard spheres in a wide range of polydispersities // AIP Advances. 2020. 10. P. 035212 (1–12).
  33. Schilling T., Pronk S., Mulder B., Frenkel D. Monte Carlo study of hard pentagons // Physical Review E. 2005. 71. P. 036138(1–6).
  34. Lubachevsky B.D., Stillinger F.H., Pinson E.N. Disks vs. Spheres: Contrasting Properties of Random Packings // Journal of Statistical Physics. 1991. 64, № 3/4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the packing density η on the maximum given number of iterations (K) on the last placed particle.

Download (47KB)
3. Fig. 2. Initial (a) and final (b) ensembles of identical regular pentagons in a square box at initial ratio D / L ≈ 0.1.

Download (217KB)
4. Fig. 3. Dependence of the number of displacement attempts M on the achieved packing density η.

Download (43KB)
5. Fig. 4. Dependence of the maximum achieved packing density ηmax in the starting and final (jammed) packing on the given largest number of iterations (KRSA) per placed particle in the starting RSA ensemble.

Download (62KB)
6. Fig. 5. Pairwise correlation functions of the pentagon ensemble for packing densities η = 0.445 (a), 0.650 (b), 0.751 (c), and 0.839 (d).

Download (144KB)
7. Fig. 6. Radial distribution functions for the ensemble of hard discs at packing densities η = 0.518 (a), 0.650 (b), 0.750 (c) and 0.836 (d).

Download (147KB)
8. Fig. 7. Correlation function G (x / d) for a random ensemble of regular pentagons at different packing densities η.

Download (140KB)
9. Fig. 8. Dependence of the maximum achieved packing density on the ratio of the radii of the incircle and circumcircle for star-shaped figures with pentagonal symmetry.

Download (49KB)

Copyright (c) 2025 Russian Academy of Sciences