Multiparameter quantum metrology with bright solitons

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the problem of quantum metrology with simultaneous measurement of several phase parameters in the framework of current tendencies of development of alternative navigation. The fundamental limits of linear and nonlinear metrology are studied. The effect of losses on the accuracy of quantum metrology for several parameters is revealed. A realistic scenario for preparing three-mode NooN states using atomic bright solitons is proposed.

全文:

受限制的访问

作者简介

A. Alodjants

ITMO National Research University; Southern Ural State University

编辑信件的主要联系方式.
Email: alexander_ap@list.ru
俄罗斯联邦, Saint Petersburg; Chelyabinsk

D. Tsarev

ITMO National Research University; Southern Ural State University

Email: alexander_ap@list.ru
俄罗斯联邦, Saint Petersburg; Chelyabinsk

S. Osipov

Cherepovets State University

Email: alexander_ap@list.ru
俄罗斯联邦, Cherepovets

M. Podoshvedov

Southern Ural State University; Kazan National Research Technical University

Email: alexander_ap@list.ru
俄罗斯联邦, Chelyabinsk; Kazan

S. Kulik

Southern Ural State University; Lomonosov Moscow State University

Email: alexander_ap@list.ru
俄罗斯联邦, Chelyabinsk; Moscow

参考

  1. Pezzé L., Smerzi A., Oberthaler M.K. et al. // Rev. Mod. Phys. 2018. V. 90. Art. No. 035005.
  2. Degen C.L., Reinhard F., Cappellaro P. // Rev. Mod. Phys. 2017. V. 89. Art. No. 035002.
  3. Crawford S.E., Shugayev R.A., Paudel H.P. et al. // Adv. Quantum Technol. 2021. V. 4. Art. No. 2100049.
  4. Bongs K., Holynski M., Vovrosh J. et al. // Nature Rev. Phys. 2019. V. 1. P. 731.
  5. Abend S., Allard B., Arnold A.S. et al. // AVS Quantum Sci. 2023. V. 5. No. 1. Art. No. 019201.
  6. Ludlow A.D., Boyd M.M., Ye J. et al. // Rev. Mod. Phys. 2015. V. 87 P. 2.
  7. Mitchell M.W., Alvarez S.P. // Rev. Mod. Phys. 2020. V. 92. No. 2. Art. No. 021001.
  8. Templier S., Cheiney P., D’Armagnac De Castanet Q. // Sci. Advances. 2022. V. 8. Art. No. eadd3854.
  9. Bloch I. // Nature Physics. 2005. V. 1. No. 1. P. 23.
  10. Сазонов С.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 766; Sazonov S. V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 643.
  11. Afanasiev A.E., Kalmykov A.S., Kirtaev R.V. et al. // Opt. Laser Tech. 2022. V. 148. Art. No. 107698.
  12. Sewell R.J., Dingjan J., Baumgärtner F. et al. // J. Physics B. 2010. V. 43. No. 5. Art. No. 051003.
  13. Царёв Д.В., Нго Т.В., Алоджанц А.П. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 332; Tsarev D.V., Ngo V.T., Alodjants A.P. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 3. P. 257.
  14. Сазонов С.В., Устинов Н.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 1. С. 11; Sazonov S.V., Ustinov N.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 1. P. 5.
  15. Touboul P., Métris G., Rodrigues M. et al. // Phys. Rev. Lett. 2022. V. 129. No. 12. Art. No. 121102.
  16. Anglin J.R., Vardi A. // Phys. Rev. A. 2001. V. 64. No. 5. Art. No. 013605.
  17. Калинович А.А., Захарова И.Г. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1701; Kalinovich A.A., Zakharova I.G. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1785.
  18. Joo J., Park K., Jeong H. et al. // Phys. Rev. A. 2012. V. 86. Art. No. 043828.
  19. Dowling L.P. // Cont. Phys. 2008. V. 49. P. 125.
  20. Birrittella R.J., Alsing P.M., Gerry C. C. // AVS Quantum Sci. 2021. V. 3. Art. No. 014701.
  21. Tsarev D.V., Arakelian S.M., Chuang Y.-L. et al. // Opt. Express. 2018. V. 26. Art. No. 19583.
  22. Maldonado-Mundo D., Luis A. // Phys. Rev. A. 2009. V. 80. Art. No. 063811.
  23. Napolitano M., Mitchell M.W. // New J. Phys. 2010. V. 12. Art. No. 09301.
  24. Tsarev D.V., Ngo T.V., Lee R.-K., Alodjants A.P. // New J. Phys. 2019. V. 21 Art. No. 083041.
  25. Alodjants A.P., Tsarev D.V., Ngo T.V., Lee R.-K. // Phys. Rev. A. 2022. V. 105. Art. No. 012606.
  26. Liu J., Lu X.M., Sun Z., Wang X. // J. Phys. A. 2016. V. 49. Art. No. 115302.
  27. Gessner M., Pezzé L., Smerzi A. // Phys. Rev. Lett. 2018. V. 121. Art. No. 130503.
  28. Humphreys P.C., Barbieri M., Datta A., Walm-sley I.A. // Phys. Rev. Lett. 2013. V. 111. Art. No. 070403.
  29. Demkowicz-Dobrzanski R., Dorner U., Smith B.J. et al. // Phys. Rev. A. 2009. V. 80. Art. No. 013825.
  30. Raghavan S., Agrawan G.P. // J. Mod. Optics. 2000. V. 47. P. 1155.
  31. Tsarev D., Alodjants A., Lee R.-K. // New J. Physics. 2020. V. 22. No. 11. Art. No. 113016.
  32. Tsarev D., Osipov S., Lee R.-K. et al. // Phys. Rev. A. 2023. V. 108. Art. No. 062612.
  33. Dorner U., Demkowicz-Dobrzanski R., Smith B. J. et al. // Phys. Rev. Lett. 2009. V. 102. Art. No. 040403.
  34. Humphreys P.C., Barbieri M., Datta A., Walmsley I.A. // Phys. Rev. Lett. 2013. V. 111. Art. No. 070403.
  35. Khaykovich L., Schreck F., Ferrari G. et al. // Science. 2002. V. 296. P. 1290.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of multiparameter quantum metrology with solitons. |ψin> is a trial multiparticle state of quantum solitons, which evolves with the accumulation of phases φj containing information about the measured parameters χj (j = 1, ..., d). The operator denotes the linear transformations that allow the construction of a procedure for measuring and estimating the unknown parameters. Details are given in the text

下载 (59KB)
3. Fig. 2. TMSDK ground state distributions at (a) Λ = 0; (b) Λ = Λcr = 3.34087496; (c) Λ = 3.345. N = 40

下载 (124KB)
4. Fig. 3. Dependence of the ultimate measurement error σ(1) on the control parameter Λ in the vicinity of the critical point Λ = Λcr for linear quantum metrology using solitons. The particle loss is characterised by the deviation of the FDP transparency coefficient η from unity. The number of particles is N = 40. The limit linear quantum metrology is characterised by the SCP and CIP, which are indicated by the dashed lines. The black dotted line denotes the accuracy of linear metrology achieved using optimal states, while the thin solid black line corresponds to the PG σPG = 1 / N

下载 (102KB)

版权所有 © Russian Academy of Sciences, 2024