Fluorescent research of antibiotic phototransformation in aqueous solution

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We presented a spectral-luminescent study of the sulfaguanidine phototransformation in aqueous solution under the action of ultraviolet lamp OUVb-04 (180—275 nm), KrCl (222 nm), XeBr (282 nm) and XeCl (308 nm) excilamps. An analysis of the conversion of sulfaguanidine in water shows that, under the action of XeBr excilamp radiation, the efficiency of sulfaguanidine phototransformation in water is comparable to the decrease upon excitation of OUVb-04, but higher than upon irradiation with KrCl or XeCl excilamps. The maximum loss for sulfaguanidine is 99 % without the introduction of additional oxidizing agents. After irradiation, several photoproducts of various nature were recorded.

全文:

受限制的访问

作者简介

N. Bezlepkina

National Research Tomsk State University

编辑信件的主要联系方式.
Email: nadezhda.bezlepkina174833@mail.ru
俄罗斯联邦, Tomsk

O. Tchaikovskaya

National Research Tomsk State University; Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: nadezhda.bezlepkina174833@mail.ru
俄罗斯联邦, Tomsk; Yekaterinburg

E. Bocharnikova

National Research Tomsk State University

Email: nadezhda.bezlepkina174833@mail.ru
俄罗斯联邦, Tomsk

参考

  1. Ионин А.А., Гончуков С.А., Зазымкина Д.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1537; Ionin A.A., Gonchukov S.A., Zazymkina D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1321.
  2. Daughton C.G., Ternes T.A. // Environ. Health Perspect. 1999. V. 107. P. 907.
  3. Ternes T.A., Meisenheimer M., McDowell D. et al. // Environ. Sci. Technol. 2002. V. 36. P. 3855.
  4. Khan M.F., Yu L., Hollman J. et al. // Environ. Sci. Water Res. Technol. 2020. V. 6. No. 6. P. 1711.
  5. Borowska E., Felis E., Miksch K. // J. Adv. Oxid. Technol. 2015. V. 18. No. 1. P. 69.
  6. Yi Z., Wang J., Tang Q., Jiang T. // RSC Advances. 2018. V. 8. No. 3. P. 1427.
  7. Lemanska-Malinowska N., Felis E., Surmacz-Górska J. // Arch. Environ. Prot. 2013. V. 39. No. 3. P. 79.
  8. Zhu G., Sun Q., Wang C. et al. // Int. J. Environ. Res. Public. Health. 2019. V. 16. No. 10. Art. No. 1797.
  9. Mersly L.E.L., Mouchtari E.M.E., Zefzoufi M. et al. // J. Photochem. Photobiol. A. 2022. V. 430. Art. No. 113985.
  10. Tchaikovskaya O.N., Bocharnikova E.N., Solomonov V.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. Suppl. 2. P. S217.
  11. Семибратова В.А., Егранов А.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 345; Semibratova V.A., Egranov A.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 3. P. 287.
  12. Литвинов В.А., Коппе В.Т., Логачев Ю.Е., Бобков В.В. // Изв. РАН. Сер. физ. 2010. Т. 74. № 2. С. 203; Litvinov V.A., Koppe V.T., Logachev Y.E., Bobkov V.V. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. No. 2. P. 183.
  13. Burrows H.D., Canle L.M., Santaballa J.A., Steenken S. // J. Photochem. Photobiol. B. 2002. V. 67. No. 2. P. 71.
  14. Lin A.Y.C., Lin Y.C., Lee W.N. // Environ. Pollution. 2014. V. 187. P. 170.
  15. Tchaikovskaya O.N., Bocharnikova E.N., Bazyl O.K. et al. // Molecules. 2023. V. 28. No. 10. Art. No. 4159.
  16. Базыль О.К., Чайковская О.Н., Чайдонова В.С. и др. // Опт. и спектроск. 2022. Т. 130. № 5. С. 627; Bazyl O.K., Tchaikovskaya O.N., Chaydonova V.S. et al. // Opt. Spectrosc. 2022. V. 130. No. 5. P. 487.
  17. Phillips G.O., Power D.M., Sewart M.C. // Radiat. Res. 1973. V. 53. No. 2. P. 204.
  18. Numan A., Villemure J.L., Lockett K.K., Danielson N.D. // Microchem. J. 2002. V. 72. No. 2. P. 147.
  19. Sun J., Chen L., Zhang X. et al. // Food Chem. 2023. V. 424. Art. No. 136410.
  20. Wojnárovits L., Tóth T., Takács E. // Crit. Rev. Environ. Sci. Technol. 2018. V. 48. No. 6. P. 575.
  21. Jiang J., Wang G. // IOP Conf. Ser. Earth Environ. Sci. 2017. V. 100. Art. No. 012040.
  22. Безлепкина Н.П., Чайковская О.Н., Бочарникова Е.Н., Базыль О.К. // Опт. и спектроск. 2023. Т. 131. № 4. С. 543; Bezlepkina N.P., Tchaikovskaya O.N., Bocharnikova E.N., Bazyl' O.K. // Opt. Spectrosc. 2023. V. 131. No. 4. P. 508.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural formulae of sulfaguanidine (a) and its putative transformation products: (b) sulfanilamide, (c) sulfanilic acid, (d) sulfacetamide, (e) phthalic acid, (f) phthalyl sulfacetamide (thalamide), (g) sulfasuccidine, (h) photoproduct P1, (i) photoproduct P2

下载 (319KB)
3. Fig. 2. Absorption (a, b) and fluorescence (c-e) spectra of sulfaguanidine in water under the action of OUVb-04 (a, c, d, e, f) and XeBr excilamp radiation (b, d). Fluorescence excitation wavelength λ = 260 nm (c, d), 300 nm (e) and 350 nm (f). Irradiation time: 1 - 0 min, 2 - 1 min, 3 - 2 min, 4 - 4 min, 5 - 8 min, 6 - 16 min, 7 - 32 min, 8 - 64 min

下载 (555KB)
4. Fig. 3. Sulfaguanidine loss (a) and photoproduct formation (b) depending on the irradiation source (1 - KrCl, 2 - XeBr, 3 - XeCl, 4 - OUVb-04). According to the data from the fluorescence (a) spectra at 344 nm and absorption (b) spectra at 560 nm

下载 (156KB)
5. Fig. 4. Fluorescence excitation spectra of sulfaguanidine in water after irradiation with OUVb-04 lamp. Irradiation time: 1 - 0 min, 2 - 1 min, 3 - 2 min, 4 - 4 min, 5 - 8 min, 6 - 16 min, 7 - 32 min, 8 - 64 min. Emission wavelength 350 nm (a) and 430 nm (b)

下载 (206KB)

版权所有 © Russian Academy of Sciences, 2024