Fluorescent research of antibiotic phototransformation in aqueous solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented a spectral-luminescent study of the sulfaguanidine phototransformation in aqueous solution under the action of ultraviolet lamp OUVb-04 (180—275 nm), KrCl (222 nm), XeBr (282 nm) and XeCl (308 nm) excilamps. An analysis of the conversion of sulfaguanidine in water shows that, under the action of XeBr excilamp radiation, the efficiency of sulfaguanidine phototransformation in water is comparable to the decrease upon excitation of OUVb-04, but higher than upon irradiation with KrCl or XeCl excilamps. The maximum loss for sulfaguanidine is 99 % without the introduction of additional oxidizing agents. After irradiation, several photoproducts of various nature were recorded.

Full Text

Restricted Access

About the authors

N. P. Bezlepkina

National Research Tomsk State University

Author for correspondence.
Email: nadezhda.bezlepkina174833@mail.ru
Russian Federation, Tomsk

O. N. Tchaikovskaya

National Research Tomsk State University; Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: nadezhda.bezlepkina174833@mail.ru
Russian Federation, Tomsk; Yekaterinburg

E. N. Bocharnikova

National Research Tomsk State University

Email: nadezhda.bezlepkina174833@mail.ru
Russian Federation, Tomsk

References

  1. Ионин А.А., Гончуков С.А., Зазымкина Д.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1537; Ionin A.A., Gonchukov S.A., Zazymkina D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1321.
  2. Daughton C.G., Ternes T.A. // Environ. Health Perspect. 1999. V. 107. P. 907.
  3. Ternes T.A., Meisenheimer M., McDowell D. et al. // Environ. Sci. Technol. 2002. V. 36. P. 3855.
  4. Khan M.F., Yu L., Hollman J. et al. // Environ. Sci. Water Res. Technol. 2020. V. 6. No. 6. P. 1711.
  5. Borowska E., Felis E., Miksch K. // J. Adv. Oxid. Technol. 2015. V. 18. No. 1. P. 69.
  6. Yi Z., Wang J., Tang Q., Jiang T. // RSC Advances. 2018. V. 8. No. 3. P. 1427.
  7. Lemanska-Malinowska N., Felis E., Surmacz-Górska J. // Arch. Environ. Prot. 2013. V. 39. No. 3. P. 79.
  8. Zhu G., Sun Q., Wang C. et al. // Int. J. Environ. Res. Public. Health. 2019. V. 16. No. 10. Art. No. 1797.
  9. Mersly L.E.L., Mouchtari E.M.E., Zefzoufi M. et al. // J. Photochem. Photobiol. A. 2022. V. 430. Art. No. 113985.
  10. Tchaikovskaya O.N., Bocharnikova E.N., Solomonov V.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. Suppl. 2. P. S217.
  11. Семибратова В.А., Егранов А.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 345; Semibratova V.A., Egranov A.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 3. P. 287.
  12. Литвинов В.А., Коппе В.Т., Логачев Ю.Е., Бобков В.В. // Изв. РАН. Сер. физ. 2010. Т. 74. № 2. С. 203; Litvinov V.A., Koppe V.T., Logachev Y.E., Bobkov V.V. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. No. 2. P. 183.
  13. Burrows H.D., Canle L.M., Santaballa J.A., Steenken S. // J. Photochem. Photobiol. B. 2002. V. 67. No. 2. P. 71.
  14. Lin A.Y.C., Lin Y.C., Lee W.N. // Environ. Pollution. 2014. V. 187. P. 170.
  15. Tchaikovskaya O.N., Bocharnikova E.N., Bazyl O.K. et al. // Molecules. 2023. V. 28. No. 10. Art. No. 4159.
  16. Базыль О.К., Чайковская О.Н., Чайдонова В.С. и др. // Опт. и спектроск. 2022. Т. 130. № 5. С. 627; Bazyl O.K., Tchaikovskaya O.N., Chaydonova V.S. et al. // Opt. Spectrosc. 2022. V. 130. No. 5. P. 487.
  17. Phillips G.O., Power D.M., Sewart M.C. // Radiat. Res. 1973. V. 53. No. 2. P. 204.
  18. Numan A., Villemure J.L., Lockett K.K., Danielson N.D. // Microchem. J. 2002. V. 72. No. 2. P. 147.
  19. Sun J., Chen L., Zhang X. et al. // Food Chem. 2023. V. 424. Art. No. 136410.
  20. Wojnárovits L., Tóth T., Takács E. // Crit. Rev. Environ. Sci. Technol. 2018. V. 48. No. 6. P. 575.
  21. Jiang J., Wang G. // IOP Conf. Ser. Earth Environ. Sci. 2017. V. 100. Art. No. 012040.
  22. Безлепкина Н.П., Чайковская О.Н., Бочарникова Е.Н., Базыль О.К. // Опт. и спектроск. 2023. Т. 131. № 4. С. 543; Bezlepkina N.P., Tchaikovskaya O.N., Bocharnikova E.N., Bazyl' O.K. // Opt. Spectrosc. 2023. V. 131. No. 4. P. 508.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulae of sulfaguanidine (a) and its putative transformation products: (b) sulfanilamide, (c) sulfanilic acid, (d) sulfacetamide, (e) phthalic acid, (f) phthalyl sulfacetamide (thalamide), (g) sulfasuccidine, (h) photoproduct P1, (i) photoproduct P2

Download (319KB)
3. Fig. 2. Absorption (a, b) and fluorescence (c-e) spectra of sulfaguanidine in water under the action of OUVb-04 (a, c, d, e, f) and XeBr excilamp radiation (b, d). Fluorescence excitation wavelength λ = 260 nm (c, d), 300 nm (e) and 350 nm (f). Irradiation time: 1 - 0 min, 2 - 1 min, 3 - 2 min, 4 - 4 min, 5 - 8 min, 6 - 16 min, 7 - 32 min, 8 - 64 min

Download (555KB)
4. Fig. 3. Sulfaguanidine loss (a) and photoproduct formation (b) depending on the irradiation source (1 - KrCl, 2 - XeBr, 3 - XeCl, 4 - OUVb-04). According to the data from the fluorescence (a) spectra at 344 nm and absorption (b) spectra at 560 nm

Download (156KB)
5. Fig. 4. Fluorescence excitation spectra of sulfaguanidine in water after irradiation with OUVb-04 lamp. Irradiation time: 1 - 0 min, 2 - 1 min, 3 - 2 min, 4 - 4 min, 5 - 8 min, 6 - 16 min, 7 - 32 min, 8 - 64 min. Emission wavelength 350 nm (a) and 430 nm (b)

Download (206KB)

Copyright (c) 2024 Russian Academy of Sciences