ON THE STABILITY BY THE NONLINEAR NON-STATIONARY HYBRID APPROXIMATION
- Authors: Platonov A.V.1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 60, No 12 (2024)
- Pages: 1640-1652
- Section: ORDINARY DIFFERENTIAL EQUATIONS
- URL: https://kld-journal.fedlab.ru/0374-0641/article/view/649575
- DOI: https://doi.org/10.31857/S0374064124120056
- EDN: https://elibrary.ru/IPHQCC
- ID: 649575
Cite item
Abstract
The paper investigates the effect of non-stationary perturbations on the stability of nonlinear nonautonomous systems with switching and impulsive effects. Sufficient conditions have been obtained to guarantee the asymptotic stability of a given equilibrium position of the initial system, and restrictions have been established under which the asymptotic stability is preserved under perturbations acting on the system. Note that the non-stationarities present both in the system itself and in perturbations can be described by unbounded functions with respect to time, as well as functions arbitrarily close to zero. It is assumed that the basic system is homogeneous in terms of the state vector. To find the required results, the second Lyapunov method is used in combination with the theory of differential inequalities.
References
- Зубов, В.И. Математические методы исследования систем автоматического регулирования / В.И. Зубов. — Л. : Машиностроение, 1974. — 335 с.
- Zubov, V.I., Mathematical Methods for the Study of Automatic Control Systems, Oxford; New York: Pergamon Press, 1962.
- Liberzon, D. Switching in Systems and Control / D. Liberzon. — Boston : Birkh‥ auser, 2003. — 233 p.
- Lakshmikantham, V. Theory of Impulsive Differential Equations / V. Lakshmikantham, D.D. Bainov, P.S. Simeonov. — Singapore : World Scientific, 1989. — 288 p.
- Lu, J. Average dwell time based stability analysis for nonautonomous continuous-time switched systems / J. Lu, Z. She // Int. J. Robust Nonl. Control. — 2019. — V. 29, № 8. — P. 2333–2350.
- Stabilisability of time-varying switched systems based on piecewise continuous scalar functions / J. Lu, Z. She, W. Feng, S.S. Ge // IEEE Trans. on Automatic Control. — 2019. — V. 64, № 6. — P. 2637–2644.
- Finite-time stability and asynchronously switching control for a class of time-varying switched nonlinear systems / R. Wang, J. Xing, Z. Xiang, Q. Yang // Trans. of the Institute of Measurement and Control. — 2019. — V. 42, № 6. — P. 1215–1224.
- Unified stability criteria for slowly time-varying and switched linear systems / X. Gao, D. Liberzon, J. Liu, T. Basar // Automatica. — 2018. — V. 96. — P. 110–120.
- Platonov, A.V. Stability conditions for some classes of time-varying switched systems / A.V. Platonov // Int. J. Syst. Science. — 2022. — V. 35, № 10. — P. 2235–2246.
- Aleksandrov, A.Yu. On the asymptotic stability of switched homogeneous systems / A.Yu. Aleksandrov, A.A. Kosov, A.V. Platonov // Syst. Control Lett. — 2012. — V. 61, № 1. — P. 127–133.
- Zhang, J. Global asymptotic stabilisation for switched planar systems / J. Zhang, Z. Han, J. Huang // Int. J. Syst. Science. — 2015. — V. 46, № 5. — P. 908–918.
- Aleksandrov, A. Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation / A. Aleksandrov, D. Efimov // Nonlin. Anal. Hybrid Syst. — 2021. — V. 42. — Art. 101090.
- Liu, X. Links between different stabilities of switched homogeneous systems with delays and uncertainties / X. Liu, D. Liu // Int. J. Robust Nonl. Control. — 2016. — V. 26, № 1. — P. 174–184.
- On robust stability of switched homogeneous systems / H. Yang, D. Zhao, B. Jiang, S. Ding // IET Control Theory & Applications. — 2021. — V. 15, № 5. — P. 758–770.
- Rosier, L. Homogeneous Lyapunov function for homogeneous continuous vector field / L. Rosier // Syst. Control Lett. — 1992. — V. 19, № 6. — P. 467–473.
- Александров, А.Ю. Об устойчивости решений нелинейных систем с неограниченными возмущениями / А.Ю. Александров // Мат. заметки. — 1998. — Т. 63, № 1. — С. 3–8.
- Aleksandrov, A.Yu., Stability of solutions of nonlinear systems with unbounded perturbations, Math. Notes, 1996, vol. 63, no. 1, pp. 3–8.
- Платонов, А.В. Исследование устойчивости решений нелинейных систем с неограниченными возмущениями / А.В. Платонов // Дифференц. уравнения. — 1999. — Т. 35, № 12. — C. 1707–1708.
- Platonov, A.V., Issledovanie ustoichivostyi reshenii nelineinyh sistem s neogranichennyimi vozmush’eniyami, Differ. Uravn., 1999, vol. 35, no. 12, pp. 1707–1708.
Supplementary files
