INITIAL PROBLEMS FOR THE ABSTRACT LEGENDRE EQUATION CONTAINING TWO PARAMETERS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the concept of a fractional integral of a function over another function, transformation operators are constructed that make it possible to prove the solvability of initial problems for the abstract singular Legendre equation containing two parameters. Examples are given.

About the authors

A. V Glushak

Belgorod State National Research University

Email: aleglu@mail.ru
Russia

References

  1. Carroll, R.W. Singular and Degenerate Cauchy Problems / R.W. Carroll, R.E. Showalter. — New York : Academic Press, 1976. — 333 p.
  2. Sitnik, S.M. and Shishkina, E.L., Metod operatorov preobrazovaniya dlya differentsial’nykh uravnenii s operatorami besselya (Method of Transformation Operators for Differential Equations with Bessel Operators), Moscow: Fizmatlit, 2019.
  3. Glushak, A.V. and Pokruchin, O.A., Criterion for the solvability of the Cauchy problem for an abstract Euler–Poisson–Darboux equation, Differ. Equat., 2016, vol. 52, no. 1, pp. 39–57.
  4. Glushak, A.V., Family of Bessel operator functions, Itogi Nauki Tekh. Ser.: Sovrem. Mat. Pril. Temat. Obzory, Moscow: VINITI RAN, 2020, vol. 187, pp. 36–43.
  5. Glushak, A.V., The Legendre operator function, Izvestiya: Mathematics, 2001, vol. 65, no. 6, pp. 1073–1083.
  6. Glushak, A.V., Uniquely solvable problems for abstract Legendre equation, Russ. Math., 2018, vol. 62, no. 7, pp. 1–12.
  7. Glushak, A.V. A family of singular differential equations / A.V. Glushak // Lobachevskii J. Math. — 2020. — V. 41, № 5. — P. 763-771.
  8. Glushak, A.V., The associated operator Legendre function and the incomplete Cauchy problem, Russ. Math., 2022, vol. 66, no. 9, pp. 1–10.
  9. Fattorini, H.O. The undetermined Cauchy problem in Banach spaces / H.O. Fattorini // Math. Ann. — 1973. — V. 200, № 5. — P. 103-112.
  10. De Laubenfels, R. Existence Families, Functional Calculi and Evolution Equations / R. De Laubenfels. — Springer-Verlag, 1994. — 244 p.
  11. Glushak, A.V., Macdonald operator function and the incomplete Cauchy problem for the Euler–Poisson–Darboux equation, Itogi Nauki Tekh. Ser. Sovrem. Mat. Pril. Temat. Obzory, 2021, vol. 195, pp. 35–43.
  12. Katrakhov, V.V. and Sitnik, S.M., The transmutation method and boundary-value problems for singular elliptic equations, Contemporary Mathematics. Fundamental Directions, 2018, vol. 64, no. 2, pp. 211–426.
  13. Samko, S.G., Kilbas, A.A., and Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, Boca Raton: CRC Press, 1993.
  14. Goldstein, J.A., Semigroups of Linear Operators and Applications, New York: Oxford Univ. Press, 1985.
  15. Vasil’ev, V.V., Krein, S.G., and Piskarev, S.I., Semigroups of operators, cosine operator functions, and linear differential equations, J. Sov. Math., 1991, vol. 54, no. 4, pp. 1042–1129.
  16. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series: More Special Functions, New York: Gordon and Breach Science Publishers, 1990.
  17. Carrol, R.W. Transmutation, Scattering Theory and Special Functions / R.W. Carrol. — North Holland, 1982. — 457 p.
  18. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series. Elementary Functions, New York etc.: Gordon and Breach Science Publishers, 1986.
  19. Trimeche, K. Transformation integrale de Weyl et theoreme de Paley-Wiener associes a un operateur differentiel singulier sur (0, то) / K. Trimeche //J. Math. pur et Appl. — 1981. — V. 60. — P. 51-98.
  20. Virchenko, N. Generalized Associated Legendre Functions and their Applications / N. Virchenko, I. Fedotova. — Singapore ; New Jersey ; London ; Hong Kong : World Scientific, 2001. — 196 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences