Development and validation of method to predict pathology invasiveness in patients with a solitary pulmonary nodule
- Authors: Huang L.1, Lin W.1, Xie D.1, Yu Y.2,3, Cao H.4, Liao G.1, Wu S.1, Yao L.1, Wang Z.4, Wang M.5, Wang S.5, Wang G.5, Zhang D.1, Yao S.6, He Z.2, Cho W.C.6, Chen D.7, Zhang Z.1, Li W.8, Qiao G.1, Chan L.W.9, Zhou H.1
-
Affiliations:
- Shantou University Medical College
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
- Beijing Normal University-Hong Kong Baptist University United International College
- Zhoushan Hospital
- Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences
- Queen Elizabeth Hospital
- Capital Medical University
- Yat-Sen University
- The Hong Kong Polytechnic University
- Issue: Vol 69, No 1 (2024)
- Pages: 52-69
- Section: Original Study Articles
- Published: 18.12.2024
- URL: https://kld-journal.fedlab.ru/0869-2084/article/view/640151
- DOI: https://doi.org/10.17816/cld640151
- ID: 640151
Cite item
Abstract
AIM: To develop and validate a preoperative CT-based nomogram combined with radiomic and clinical–radiological signatures to distinguish preinvasive lesions from pulmonary invasive lesions.
MATERIALS AND METHODS: This was a retrospective, diagnostic study conducted from August 1, 2018, to May 1, 2020, at three centers. Patients with a solitary pulmonary nodule were enrolled in the GDPH center and were divided into two groups (7:3) randomly: development ( n =149) and internal validation ( n =54). The SYSMH center and the ZSLC Center formed an external validation cohort of 170 patients. The least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression analysis were used to feature signatures and transform them into models.
RESULTS: The study comprised 373 individuals from three independent centers (female: 225/373, 60.3%; median [IQR] age, 57.0 [48.0–65.0] years). The AUCs for the combined radiomic signature selected from the nodular area and the perinodular area were 0.93, 0.91, and 0.90 in the three cohorts. The nomogram combining the clinical and combined radiomic signatures could accurately predict interstitial invasion in patients with a solitary pulmonary nodule (AUC, 0.94, 0.90, 0.92) in the threeabilities, according to a decision curve analysis and the Akaike information criteria.
CONCLUSION: This study demonstrated that a nomogram constructed by identified clinical–radiological signatures and combined radiomic signatures has the potential to precisely predict pathology invasiveness.
This article is a translation of the article by Huang L, Lin W, Xie D, et al. Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study. Eur Radiol. 2022;32(3):1983–1996. doi: 10.1007/s00330-021-08268-z
This article is licensed under a Creative Commons Attribution 4.0 International License Creative Commons Attribution 4.0 ( https://creativecommons.org/licenses/by/4.0/) .
Keywords
Full Text

About the authors
Luyu Huang
Shantou University Medical College
Email: guibinqiao@126.com
ORCID iD: 0000-0002-5791-4781
MD
China, GuangzhouWeihuan Lin
Shantou University Medical College
Email: guibinqiao@126.com
ORCID iD: 0000-0002-2982-3284
MD
China, GuangzhouDaipeng Xie
Shantou University Medical College
Email: guibinqiao@126.com
ORCID iD: 0000-0003-1470-9945
MD
China, GuangzhouYunfang Yu
Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University; Beijing Normal University-Hong Kong Baptist University United International College
Email: guibinqiao@126.com
ORCID iD: 0000-0003-2579-6220
Associate Professor
China, Guangzhou; ZhuhaiHanbo Cao
Zhoushan Hospital
Email: guibinqiao@126.com
ORCID iD: 0000-0001-9268-497X
MD
China, Zhoushan City, Zhejiang ProvinceGuoqing Liao
Shantou University Medical College
Email: guibinqiao@126.com
ORCID iD: 0000-0003-2593-4902
MD
China, GuangzhouShaowei Wu
Shantou University Medical College
Email: guibinqiao@126.com
ORCID iD: 0000-0002-8786-4375
Ph.D., Professor
China, GuangzhouLintong Yao
Shantou University Medical College
Email: guibinqiao@126.com
ORCID iD: 0009-0008-0382-5047
MD
China, GuangzhouZhaoyu Wang
Zhoushan Hospital
Email: guibinqiao@126.com
MD
China, Zhoushan City, Zhejiang ProvinceMei Wang
Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences
Email: 281406196@gg.com
China, Guangzhou
Siyun Wang
Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences
Email: guibinqiao@126.com
ORCID iD: 0000-0001-7052-4430
MD
China, GuangzhouGuangyi Wang
Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences
Email: wangguangyi@gdph.org.cn
MD
China, GuangzhouDongkun Zhang
Shantou University Medical College
Email: guibinqiao@126.com
MD
China, GuangzhouSu Yao
Queen Elizabeth Hospital
Email: guibinqiao@126.com
MD
China, Hong KongZifan He
Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
Email: guibinqiao@126.com
MD
China, GuangzhouWilliam Chi-Shing Cho
Queen Elizabeth Hospital
Email: williamcscho@gmail.com
MD, Ph.D.
China, Hong KongDuo Chen
Capital Medical University
Email: guibinqiao@126.com
MD
China, BeijingZhengjie Zhang
Shantou University Medical College
Email: guibinqiao@126.com
MD
China, GuangzhouWanshan Li
Yat-Sen University
Email: guibinqiao@126.com
ORCID iD: 0009-0007-2940-8033
MD
China, GuangzhouGuibin Qiao
Shantou University Medical College
Author for correspondence.
Email: guibinqiao@126.com
ORCID iD: 0000-0001-9200-9317
MD
China, GuangzhouLawrence Wing-Chi Chan
The Hong Kong Polytechnic University
Email: wing.chi.chan@polyu.edu.hk
ORCID iD: 0000-0002-2163-389X
MD
China, Hong KongHaiyu Zhou
Shantou University Medical College
Email: zhouhaiyu@gdph.org.cn
ORCID iD: 0000-0002-3328-6792
Ph.D. (Oncology)
China, GuangzhouReferences
- The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. doi: 10.1056/NEJMoa1102873
- MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society. 2017. Radiology. 2017;284(1):228–243. doi: 10.1148/radiol.2017161659
- Callister MEJ, Baldwin DR, Akram AR, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE. Thorax. 2015;70(Suppl 2):ii1–ii54. doi: 10.1136/ thoraxjnl-2015-207168
- Mets OM, de Jong PA, Chung K, et al. Fleischner recommendations for the management of subsolid pulmonary nodules: high awareness but limited conformance – a survey study. Eur Radiol. 2016;26(11):3840–3849. doi: 10.1007/s00330-016-4249-y
- Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: International Multidisciplinary Classification of Lung Adenocarcinoma: executive summary. Proc Am Thorac Soc. 2011;8(5):381–385. doi: 10.1513/pats.201107-042ST
- Borczuk AC, Qian F, Kazeros A, et al. Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol. 2009;33(3):462–469. doi: 10.1097/PAS.0b013e3181 90157c
- Zhang J, Wu J, Tan Q, et al. Why do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classification. J Thorac Oncol. 2013;8(9):1196–1202. doi: 10.1097/JTO.0b013 e3182 9f09a7
- Ost D, Fein A. Evaluation and management of the solitary pulmonary nodule. Am J Respir Crit Care Med. 2000;162(3 Pt 1):782–787. doi: 10.1164/ajrccm.162.3 . 9812152
- Causey JL, Zhang J, Ma S, et al. Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci Rep. 2018;8(1):9286. doi: 10.1038/s41598-018-27569-w
- Chae D, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid groundglass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273(1):285–293. doi: 10.1148/radiol.14132187
- Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127–157. doi: 10.3322/caac.21552
- Feng B, Chen X, Chen Y, et al. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol. 2020;30(12):6497–6507. doi: 10.1007/s00330-020-07024-z
- Chen S, Qin J, Ji X, et al. Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images. IEEE Trans Med Imaging. 2017;36(3):802–814. doi: 10.1109/TMI.2016.2629462
- Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–446. doi: 10.1016/j.ejca.2011.11.036
- Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
- Yang L, Yang J, Zhou X, et al. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Eur Radiol. 2019;29(5):2196–2206. doi: 10.1007/s00330-018-5770-y
- Song SH, Ahn JH, Lee HY, et al. Prognostic impact of nomogram based on whole tumour size, tumour disappearance ratio on CT and SUVmax on PET in lung adenocarcinoma. Eur Radiol. 2016;26(6):1538–1546. doi: 10.1007/s00330-015-4029-0
- Beig N, Khorrami M, Alilou M, et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology. 2019;290(3):783–792. doi: 10.1148/radiol.2018180910
- Banat GA, Tretyn A, Pullamsetti SS, et al. Immune and inflammatory cell composition of human lung cancer stroma. PLoS One. 2015;10(9):e0139073. doi: 10.1371/journal.pone.01390 73
- Nishino M. Perinodular radiomic features to assess nodule microenvironment: does it help to distinguish malignant versus benign lung nodules? Radiology. 2019;290(3):793–795. doi: 10.1148/radiol.2018182619
- Christiansen A, Detmar M. Lymphangiogenesis and cancer. Genes Cancer. 2011;2(12):1146–1158. doi: 10 . 1177/19476 01911 423028
- van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–e107. doi: 10.1158/0008-5472.CAN-17-0339
- Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung Cancer Staging Project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51. doi: 10.1016/j.jtho.2015.09.009
- Akaike H. Information theory and an extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G, editors. Selected papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics); Springer, New York, NY; 1998. doi: 10.1007/978-1-4612-1694-0_15
- Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26(6):565–574. doi: 10.1177/0272989X06295361
- Luo T, Xu K, Zhang Z, et al. Radiomic features from computed tomography to differentiate invasive pulmonary adenocarcinomas from non-invasive pulmonary adenocarcinomas appearing as part-solid ground-glass nodules. Chin J Cancer Res. 2019;31(2):329–338. doi: 10.21147/j.issn.1000-9604.2019.02.07
- Lee SM, Park C.M, Goo JM, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology. 2013;268(1):265–273. doi: 10.1148/radiol.13120949
- Li W, Wang X, Zhang Y, et al. Radiomic analysis of pulmonary ground-glass opacity nodules for distinction of preinvasive lesions, invasive pulmonary adenocarcinoma and minimally invasive adenocarcinoma based on quantitative texture analysis of CT. Chin J Cancer Res. 2018;30(4):415–424. doi: 10.21147/j.issn.1000-9604.2018.04.04
- Tunali I, Hall LO, Napel S, et al. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Med Phys. 2019;46(11):5075–5085. doi: 10.1002/mp.13808
- She Y, Zhang L, Zhu H, et al. The predictive value of CTbased radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules. Eur Radiol. 2018;28(12):5121–5128. doi: 10.1007/s00330-018-5509-9
- Wu L, Gao C, Xiang P, et al. CT-imaging based analysis of invasive lung adenocarcinoma presenting as ground glass nodules using peri- and intra-nodular radiomic features. Front Oncol. 2020;10:838. doi: 10.3389/fonc.2020.00838
- Naito M, Aokage K, Saruwatari K, et al. Microenvironmental changes in the progression from adenocarcinoma in situ to minimally invasive adenocarcinoma and invasive lepidic predominant adenocarcinoma of the lung. Lung Cancer. 2016;100:53–62. doi: 10.1016/j.lungcan.2016.07.024
- Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002;12(3):197–207. doi: 10.1016/S1044-579X(02)00023-8
- Moriya Y, Niki T, Yamada T, et al. Increased expression of laminin-5 and its prognostic significance in lung adenocarcinomas of small size: an immunohistochemical analysis of 102 cases. Cancer. 2001;91(6):1129–1141. doi: 10. 1002/1097-0142(20010315)91:6<1129::aid-cncr1109>3.0.co;2-c
- Zhang C, Zhang J, Xu FP, et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma. J Thorac Oncol. 2019;14(11):1912–1923. doi: 10.1016/j.jtho.2019.07.031
- Yim J, Zhu LC, Chiriboga L, et al. Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol. 2007;20(2):233–241. doi: 10.1038/modpathol.3800734
- Nakanishi H, Matsumoto S, Iwakawa R, et al. Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas. Cancer Res. 2009;69(4):1615–1623. doi: 10.1158/0008-5472.CAN-08-3218
- Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. 2017;19(1):1–14. doi: 10.1186/s13058-017-0846-1
- Braman N, Prasanna P, Whitney J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2) – positive breast cancer. JAMA Netw Open. 2019;2(4):e192561. doi: 10.1001/jamanetworkopen.2019.2561
- Wang X, Zhao X, Li Q, et al. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Eur Radiol. 2019;29(11):6049–6058. doi: 10.1007/s00330-019-06084-0
- Levman JED, Martel AL. A margin sharpness measurement for the diagnosis of breast cancer from magnetic resonance imaging examinations. Acad Radiol. 2011;18(12):1577–1581. doi: 10.1016/j.acra.2011.08.004
- Uthoff J, Stephens MJ, Newell JD, et al. Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Med Phys. 2019;46(7):3207–3216. doi: 10.1002/mp.13592
- Wu G, Woodruff HC, Shen J, et al. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study. Radiology. 2020;297(2):451–458. doi: 10.1148/radiol.2020192431
- Ferreira JR, Oliveira MC, de Azevedo-Marques PM. Characterization of pulmonary nodules based on features of margin sharpness and texture. J Digit Imaging. 2018;31(4):451–463. doi: 10.1007/s10278-017-0029-8
Supplementary files
