The Application of Multiplex Real-time PCR and Routine Culture Method in the Children Gut Microbiota Assessing
- Авторлар: Amineva P.G.1,2, Voroshilina E.S.1,3, Kornilov D.O.1, Simarzina V.М.1, Tryapitsyn M.A.1, Petrov V.М.1, Zornikov D.L.1
-
Мекемелер:
- Ural State Medical University
- Medical Center «Quality Med»
- Medical Center «Garmonia»
- Шығарылым: Том 69, № 11 (2024)
- Беттер: 325-335
- Бөлім: Original Study Articles
- ##submission.datePublished##: 12.11.2024
- URL: https://kld-journal.fedlab.ru/0869-2084/article/view/660880
- DOI: https://doi.org/10.17816/cld660880
- EDN: https://elibrary.ru/TZPDHI
- ID: 660880
Дәйексөз келтіру
Аннотация
Background: In recent decades, considerable attention has been paid to the study of the gut microbiota. Nevertheless, the existing diagnostic approaches to assessing the gut microbiota in clinical practice are very limited. In this regard, there is a need to introduce a validated laboratory method, taking into account modern ideas about the gut microbiota.
Aim: to compare the results of gut microbiota examination by a routine culture method and real-time PCR in children
Methods: 102 stool samples from children aged 0 to 14 years were simultaneously examined by a routine culture method and real-time PCR. The PCR was performed using the "Enteroflor Kiddy Kit" (DNA-Technology, Russia), which allows to determine the quantity of total bacterial mass, 40 groups of normal and opportunistic microorganisms, estimated numbers of "child" and "adult" bifidobacteria, the Clostridioides difficile enterotoxin genes – cdtA and cdtB, the Streptococcus agalactiae adhesin gene – Srr2, the staphylococcal marker of resistance to beta-lactam antibiotics – gene mecA, as well as the relative abundance of each bacterial group.
Results: The culture method allowed to isolate up to 15 microbial groups in the samples. The real-time PCR identified 43 groups, 2 virulence genes and one gene for antibiotic resistance in amounts up to 1011 GE/g, allowed to calculate the abundance of each target bacterial group from all detected bacteria. The best result matching between the culture method and the real-time PCR was noted for C. albicans (100% of double-negative results), Bifidobacterium spp. (92.2% matches), E. coli (80.4% matches) and S. aureus (64.7% matches). Whereas for the other compared microbial groups, the matching results were recorded only in 9.8-36.3% of the samples. The greatest discrepancies concerned difficult-to-cultivate groups of microorganisms, such as lactobacilli, clostridia, and bacteroids.
Conclusion: The real-time PCR method was able to confirm the positive results of the culture study in 94.3% of cases, whereas the growth of microorganisms in PCR-positive samples was noted only in 32% of cases. The spectrum of microbial markers determined by real-time PCR significantly exceeded that for the culture method.
Толық мәтін

Авторлар туралы
Polina Amineva
Ural State Medical University; Medical Center «Quality Med»
Хат алмасуға жауапты Автор.
Email: pga@qualitymed.ru
ORCID iD: 0000-0001-9752-5054
SPIN-код: 5829-8343
Ресей, Yekaterinburg; Yekaterinburg
Ekaterina Voroshilina
Ural State Medical University; Medical Center «Garmonia»
Email: voroshilina@gmail.com
ORCID iD: 0000-0003-1630-1628
SPIN-код: 7431-2128
MD, Dr. Sci. (Medicine), Assistant Professor
Ресей, Yekaterinburg; YekaterinburgDaniil Kornilov
Ural State Medical University
Email: danilovkornil@gmail.com
ORCID iD: 0000-0001-5311-1247
SPIN-код: 2145-8065
Ресей, Yekaterinburg
Veronika Simarzina
Ural State Medical University
Email: simarzina.vm@gmail.com
ORCID iD: 0009-0001-0855-2163
SPIN-код: 1598-6507
Ресей, Yekaterinburg
Mikhail Tryapitsyn
Ural State Medical University
Email: averson2016@yandex.ru
ORCID iD: 0009-0008-2647-8607
SPIN-код: 4848-4198
Ресей, Yekaterinburg
Vasily Petrov
Ural State Medical University
Email: petruha_w@mail.ru
ORCID iD: 0009-0001-9761-0950
SPIN-код: 4555-9530
MD, Cand. Sci. (Medicine), Assistant Professor
Ресей, YekaterinburgDanila Zornikov
Ural State Medical University
Email: zornikovdl@gmail.com
ORCID iD: 0000-0001-9132-215X
SPIN-код: 8119-6035
MD, Cand. Sci. (Medicine), Assistant Professor
Ресей, YekaterinburgӘдебиет тізімі
- Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42:75–93. doi: 10.1007/s00281-019-00775-y
- Liu Y, Du X, Zhai S, et al. Gut microbiota and atopic dermatitis in children: a scoping review. BMC Pediatr. 2022;22:323. doi: 10.1186/s12887-022-03390-3
- Baranowski JR, Claud EC. Necrotizing Enterocolitis and the Preterm Infant Microbiome. Advances in Experimental Medicine and Biology. 2019;25–36. doi: 10.1007/5584_2018_313
- Thapar N, Benninga MA, Crowell MD, et al. Paediatric functional abdominal pain disorders. Nat Rev Dis Primers. 2020;6(1):89. doi: 10.1038/s41572-020-00222-5
- Zhang S, Dang Y. Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne). 2022;13:994930. doi: 10.3389/fendo.2022.994930
- Gabriel CL, Ferguson JF. Gut Microbiota and Microbial Metabolism in Early Risk of Cardiometabolic Disease. Circ Res. 2023;132(12):1674–1691. doi: 10.1161/CIRCRESAHA.123.322055
- Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients. 2020;12(3):792. doi: 10.3390/nu12030792
- Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 2023;20(7):429–452. doi: 10.1038/s41571-023-00766-x
- Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–729. doi: 10.1038/s41591-019-0439-x
- Carías Domínguez AM, de Jesús Rosa Salazar D, Stefanolo JP, et al. Intestinal Dysbiosis: Exploring Definition, Associated Symptoms, and Perspectives for a Comprehensive Understanding — a Scoping Review. Probiotics & Antimicro. Prot. 2025;17:440–449. doi: 10.1007/s12602-024-10353-w
- Dolgov VV, Menshikov VV. Clinical laboratory diagnostics; national guidelines. Moscow: GEOTAR-Media; 2012. 352–372 p.
- Verbeke KA, Boobis AR, Chiodini A, et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 2015;28(1):42–66. doi: 10.1017/S0954422415000037
- Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. doi: 10.1186/s13073-016-0307-y
- Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11:5206. doi: 10.1038/s41467-020-18871-1
- Alieva EV, Kaftyreva LA, Makarova MA, Tartakovsky IS. Practical recommendations for the preanalytical stage of microbiological research. Laboratory Service. 2020;9(2):45–66. doi: 10.17116/labs2020902145
- Turnbaugh P, Ley R, Hamady M, et al. The Human Microbiome Project. Nature. 2007;449:804–810. doi: 10.1038/nature06244
- Barsuk AL, Sumina AV, Kuzin VB, Kozlov RS. Low diagnostic value of the microbiological examination of feces for «dysbacteriosis». Diagnostic issues in pediatrics. 2009;(2):7–11. EDN: KVLTKN
- Ivanov VP, Boytsov AG, Kovalenko AD, et al. Improvement of diagnostic methods for dysbiosis of the large intestine: An information letter. Saint-Petersburg: Gossanepidnadzor Center; 2002. (In Russ.)
- Egorov NS, editor. Practical training in microbiology. Textbook. Moscow: Moscow State University Publishing House; 1995. (In Russ.)
- Fernandez-Caso B, Miqueleiz A, Valdez VB, Alarcón T. Are molecular methods helpful for the diagnosis of Helicobacter pylori infection and for the prediction of its antimicrobial resistance? Frontiers in microbiology. 2022;13:962063. doi: 10.3389/fmicb.2022.962063
- Melendez JH, Frankel YM, An AT, et al. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds. Clin Microbiol Infect. 2010;16(12):1762–1769. doi: 10.1111/j.1469-0691.2010.03158.x
Қосымша файлдар
