The Application of Multiplex Real-time PCR and Routine Culture Method in the Children Gut Microbiota Assessing

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background: In recent decades, considerable attention has been paid to the study of the gut microbiota. Nevertheless, the existing diagnostic approaches to assessing the gut microbiota in clinical practice are very limited. In this regard, there is a need to introduce a validated laboratory method, taking into account modern ideas about the gut microbiota. 

Aim: to compare the results of gut microbiota examination by a routine culture method and real-time PCR in children

Methods: 102 stool samples from children aged 0 to 14 years were simultaneously examined by a routine culture method and real-time PCR. The PCR was performed using the "Enteroflor Kiddy Kit" (DNA-Technology, Russia), which allows to determine the quantity of total bacterial mass, 40 groups of normal and opportunistic microorganisms, estimated numbers of "child" and "adult" bifidobacteria, the Clostridioides difficile enterotoxin genes – cdtA and cdtB, the Streptococcus agalactiae adhesin gene – Srr2, the staphylococcal marker of resistance to beta-lactam antibiotics – gene mecA, as well as the relative abundance of each bacterial group.

Results: The culture method allowed to isolate up to 15 microbial groups in the samples. The real-time PCR identified 43 groups, 2 virulence genes and one gene for antibiotic resistance in amounts up to 1011 GE/g, allowed to calculate the abundance of each target bacterial group from all detected bacteria. The best result matching between the culture method and the real-time PCR was noted for C. albicans (100% of double-negative results), Bifidobacterium spp. (92.2% matches), E. coli (80.4% matches) and S. aureus (64.7% matches). Whereas for the other compared microbial groups, the matching results were recorded only in 9.8-36.3% of the samples. The greatest discrepancies concerned difficult-to-cultivate groups of microorganisms, such as lactobacilli, clostridia, and bacteroids.

Conclusion: The real-time PCR method was able to confirm the positive results of the culture study in 94.3% of cases, whereas the growth of microorganisms in PCR-positive samples was noted only in 32% of cases. The spectrum of microbial markers determined by real-time PCR significantly exceeded that for the culture method.

全文:

受限制的访问

作者简介

Polina Amineva

Ural State Medical University; Medical Center «Quality Med»

编辑信件的主要联系方式.
Email: pga@qualitymed.ru
ORCID iD: 0000-0001-9752-5054
SPIN 代码: 5829-8343
俄罗斯联邦, Yekaterinburg; Yekaterinburg

Ekaterina Voroshilina

Ural State Medical University; Medical Center «Garmonia»

Email: voroshilina@gmail.com
ORCID iD: 0000-0003-1630-1628
SPIN 代码: 7431-2128

MD, Dr. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Yekaterinburg; Yekaterinburg

Daniil Kornilov

Ural State Medical University

Email: danilovkornil@gmail.com
ORCID iD: 0000-0001-5311-1247
SPIN 代码: 2145-8065
俄罗斯联邦, Yekaterinburg

Veronika Simarzina

Ural State Medical University

Email: simarzina.vm@gmail.com
ORCID iD: 0009-0001-0855-2163
SPIN 代码: 1598-6507
俄罗斯联邦, Yekaterinburg

Mikhail Tryapitsyn

Ural State Medical University

Email: averson2016@yandex.ru
ORCID iD: 0009-0008-2647-8607
SPIN 代码: 4848-4198
俄罗斯联邦, Yekaterinburg

Vasily Petrov

Ural State Medical University

Email: petruha_w@mail.ru
ORCID iD: 0009-0001-9761-0950
SPIN 代码: 4555-9530

MD, Cand. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Yekaterinburg

Danila Zornikov

Ural State Medical University

Email: zornikovdl@gmail.com
ORCID iD: 0000-0001-9132-215X
SPIN 代码: 8119-6035

MD, Cand. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Yekaterinburg

参考

  1. Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42:75–93. doi: 10.1007/s00281-019-00775-y
  2. Liu Y, Du X, Zhai S, et al. Gut microbiota and atopic dermatitis in children: a scoping review. BMC Pediatr. 2022;22:323. doi: 10.1186/s12887-022-03390-3
  3. Baranowski JR, Claud EC. Necrotizing Enterocolitis and the Preterm Infant Microbiome. Advances in Experimental Medicine and Biology. 2019;25–36. doi: 10.1007/5584_2018_313
  4. Thapar N, Benninga MA, Crowell MD, et al. Paediatric functional abdominal pain disorders. Nat Rev Dis Primers. 2020;6(1):89. doi: 10.1038/s41572-020-00222-5
  5. Zhang S, Dang Y. Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne). 2022;13:994930. doi: 10.3389/fendo.2022.994930
  6. Gabriel CL, Ferguson JF. Gut Microbiota and Microbial Metabolism in Early Risk of Cardiometabolic Disease. Circ Res. 2023;132(12):1674–1691. doi: 10.1161/CIRCRESAHA.123.322055
  7. Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients. 2020;12(3):792. doi: 10.3390/nu12030792
  8. Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 2023;20(7):429–452. doi: 10.1038/s41571-023-00766-x
  9. Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–729. doi: 10.1038/s41591-019-0439-x
  10. Carías Domínguez AM, de Jesús Rosa Salazar D, Stefanolo JP, et al. Intestinal Dysbiosis: Exploring Definition, Associated Symptoms, and Perspectives for a Comprehensive Understanding — a Scoping Review. Probiotics & Antimicro. Prot. 2025;17:440–449. doi: 10.1007/s12602-024-10353-w
  11. Dolgov VV, Menshikov VV. Clinical laboratory diagnostics; national guidelines. Moscow: GEOTAR-Media; 2012. 352–372 p.
  12. Verbeke KA, Boobis AR, Chiodini A, et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 2015;28(1):42–66. doi: 10.1017/S0954422415000037
  13. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. doi: 10.1186/s13073-016-0307-y
  14. Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11:5206. doi: 10.1038/s41467-020-18871-1
  15. Alieva EV, Kaftyreva LA, Makarova MA, Tartakovsky IS. Practical recommendations for the preanalytical stage of microbiological research. Laboratory Service. 2020;9(2):45–66. doi: 10.17116/labs2020902145
  16. Turnbaugh P, Ley R, Hamady M, et al. The Human Microbiome Project. Nature. 2007;449:804–810. doi: 10.1038/nature06244
  17. Barsuk AL, Sumina AV, Kuzin VB, Kozlov RS. Low diagnostic value of the microbiological examination of feces for «dysbacteriosis». Diagnostic issues in pediatrics. 2009;(2):7–11. EDN: KVLTKN
  18. Ivanov VP, Boytsov AG, Kovalenko AD, et al. Improvement of diagnostic methods for dysbiosis of the large intestine: An information letter. Saint-Petersburg: Gossanepidnadzor Center; 2002. (In Russ.)
  19. Egorov NS, editor. Practical training in microbiology. Textbook. Moscow: Moscow State University Publishing House; 1995. (In Russ.)
  20. Fernandez-Caso B, Miqueleiz A, Valdez VB, Alarcón T. Are molecular methods helpful for the diagnosis of Helicobacter pylori infection and for the prediction of its antimicrobial resistance? Frontiers in microbiology. 2022;13:962063. doi: 10.3389/fmicb.2022.962063
  21. Melendez JH, Frankel YM, An AT, et al. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds. Clin Microbiol Infect. 2010;16(12):1762–1769. doi: 10.1111/j.1469-0691.2010.03158.x

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of routine cultural examination of feces for dysbiosis. ЖСА — yolk-salt agar; КС — blood-serum agar; SS — Shigella-Salmonella agar; VSA — bismuth-sulfite agar; Лакто — agar for lactobacilli.

下载 (184KB)
3. Fig. 2. The frequency of detection and the number of detected MO in samples during culture testing. MO — microorganisms, КОЕ/г — colony-forming units per 1 gram; НГОБ — non-fermenting gram-negative microorganisms.

下载 (202KB)
4. Fig. 3. The frequency of detection (in threshold values) of target microorganisms and microbial markers (a), the median of their number (b), and the proportion of all detected bacteria (c) in the study of faeces by real-time polymerase chain reaction (n=102). Group DAMV — Dialister spp., Alisonella spp., Megasphaera spp., Veillonella spp.

下载 (492KB)

版权所有 © Amineva P.G., Voroshilina E.S., Kornilov D.O., Simarzina V.М., Tryapitsyn M.A., Petrov V.М., Zornikov D.L., 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ:  ПИ № ФС 77 - 86785 от 05.02.2024 (ранее — ПИ № ФС 77 - 59057 от 22.08.2014).