Anlotinib Inhibits Proliferation and Induces Apoptosis in B-cell Acute Lymphoblastic Leukemia by Targeting the BTK and AKT/mTOR Pathway


Cite item

Full Text

Abstract

Background: Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults, whose known drug treatments are limited and expensive.

Objective: This investigation aimed to investigate the therapeutic potential of anlotinib in B-cell acute lymphoblastic leukemia (B-ALL).

Methods: The B-ALL cell lines Nalm-6 and BALL-1 were used to verify the therapeutic potential of anlotinib in BALL. The cell activity was measured by Cell Counting Kit-8. Apoptosis was detected by Annexin V-FITC/PI double staining combined with flow cytometry. Afterward, the binding capacity of anlotinib to the critical protein was predicted by molecular docking, and the protein changes in the related pathways downstream of the target proteins were verified by western blot. Finally, the effect of anlotinib on the survival rate was verified in B-ALL nude mice.

Results: Anlotinib inhibited the proliferation of the B-ALL cell lines, Nalm-6, and BALL-1, and promoted apoptosis. Molecular docking results showed that it had the potential binding ability to BTK. Western blot revealed that anlotinib was able to inhibit the phosphorylation of BTK, AKT, and mTOR, thereby inhibiting the proliferation of B-ALL cells. In addition, anlotinib suppressed weight loss and prolonged the survival time of mice.

Conclusion: To summarize, anlotinib can inhibit the proliferation of B-ALL and promotes apoptosis by inhibiting the phosphorylation of BTK and AKT, and mTOR.

About the authors

Xiaowei Shi

Department of Hematology, Yinzhou People's Hospital

Email: info@benthamscience.net

Shuangyue Li

Department of Hematology, Yinzhou People's Hospital

Email: info@benthamscience.net

Shanhao Tang

Department of Hematology, Yinzhou People's Hospital

Email: info@benthamscience.net

Ying Lu

Department of Hematolog, Yinzhou People's Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Imai, K. Acute lymphoblastic leukemia: Pathophysiology and current therapy. Rinsho Ketsueki, 2017, 58(5), 460-470. PMID: 28592761
  2. Kantarjian, H.M.; Thomas, D.; Ravandi, F.; Faderl, S.; Jabbour, E.; Garcia-Manero, G.; Pierce, S.; Shan, J.; Cortes, J.; O'Brien, S. Defining the course and prognosis of adults with acute lymphocytic leukemia in first salvage after induction failure or short first remission duration. Cancer, 2010, 116(24), 5568-5574. doi: 10.1002/cncr.25354 PMID: 20737576
  3. Gutierrez-Camino, Á.; Umerez, M.; Martin-Guerrero, I.; García de Andoin, N.; Santos, B.; Sastre, A.; Echebarria-Barona, A.; Astigarraga, I.; Navajas, A.; Garcia-Orad, A. Mir-pharmacogenetics of Vincristine and peripheral neurotoxicity in childhood B-cell acute lymphoblastic leukemia. Pharmacogenomics J., 2018, 18(6), 704-712. doi: 10.1038/s41397-017-0003-3 PMID: 29282364
  4. Goodman, P.A.; Wood, C.M.; Vassilev, A.O.; Mao, C.; Uckun, F.M. Defective expression of Bruton's tyrosine kinase in acute lymphoblastic leukemia. Leuk. Lymphoma, 2003, 44(6), 1011-1018. doi: 10.1080/1042819031000067576 PMID: 12854903
  5. Katz, F.E.; Lovering, R.C.; Bradley, L.A.; Rigley, K.P.; Brown, D.; Cotter, F.; Chessells, J.M.; Levinsky, R.J.; Kinnon, C. Expression of the X-linked agammaglobulinemia gene, btk in B-cell acute lymphoblastic leukemia. Leukemia, 1994, 8(4), 574-577. PMID: 8152253
  6. Butler, M.; van Ingen Schenau, D.S.; Yu, J.; Jenni, S.; Dobay, M.P.; Hagelaar, R.; Vervoort, B.M.T.; Tee, T.M.; Hoff, F.W.; Meijerink, J.P.; Kornblau, S.M.; Bornhauser, B.; Bourquin, J.P.; Kuiper, R.P.; van der Meer, L.T.; van Leeuwen, F.N. BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood, 2021, 138(23), 2383-2395. doi: 10.1182/blood.2021011787 PMID: 34280258
  7. Müller, V.; Clemens, M.; Jassem, J.; Al-Sakaff, N.; Auclair, P.; Nüesch, E.; Holloway, D.; Shing, M.; Bang, Y.J. Long-term trastuzumab (Herceptin®) treatment in a continuation study of patients with HER2-positive breast cancer or HER2-positive gastric cancer. BMC Cancer, 2018, 18(1), 295. doi: 10.1186/s12885-018-4183-2 PMID: 29544445
  8. Zhu, Z.; Ling, L.; Qi, L.; Chong, Y.; Xue, L. Bruton's Tyrosine Kinase (BTK) Inhibitor (Ibrutinib)-suppressed migration and invasion of prostate cancer. Onco. Targets Ther., 2020, 13, 4113-4122. doi: 10.2147/OTT.S245848 PMID: 32494164
  9. Overman, M.; Javle, M.; Davis, R.E.; Vats, P.; Kumar-Sinha, C.; Xiao, L.; Mettu, N.B.; Parra, E.R.; Benson, A.B.; Lopez, C.D.; Munugalavadla, V.; Patel, P.; Tao, L.; Neelapu, S.; Maitra, A. Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. J. Immunother. Cancer, 2020, 8(1), e000587. doi: 10.1136/jitc-2020-000587 PMID: 32114502
  10. Lin, B.; Song, X.; Yang, D.; Bai, D.; Yao, Y.; Lu, N. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene, 2018, 654, 77-86. doi: 10.1016/j.gene.2018.02.026 PMID: 29454091
  11. Lu, J.; Zhong, H.; Wu, J.; Chu, T.; Zhang, L.; Li, H.; Wang, Q.; Li, R.; Zhao, Y.; Gu, A.; Wang, H.; Shi, C.; Xiong, L.; Zhang, X.; Zhang, W.; Lou, Y.; Yan, B.; Dong, Y.; Zhang, Y.; Li, B.; Zhang, L.; Zhao, X.; Li, K.; Han, B. Circulating DNA‐based sequencing guided anlotinib therapy in non‐small cell lung cancer. Adv. Sci., 2019, 6(19), 1900721. doi: 10.1002/advs.201900721 PMID: 31592412
  12. Tang, Y.; Ou, Z.; Yao, Z.; Qiao, G. A case report of immune checkpoint inhibitor nivolumab combined with anti-angiogenesis agent anlotinib for advanced esophageal squamous cell carcinoma. Medicine, 2019, 98(40), e17164. doi: 10.1097/MD.0000000000017164 PMID: 31577707
  13. Gao, Q.; Tang, S.; Chen, H.; Chen, H.; Li, X.; Jiang, Y.; Fu, S.; Lin, S. Intratumoral injection of anlotinib hydrogel enhances antitumor effects and reduces toxicity in mouse model of lung cancer. Drug Deliv., 2020, 27(1), 1524-1534. doi: 10.1080/10717544.2020.1837292 PMID: 33118422
  14. Yang, Q.; Ni, L.; Imani, S.; Xiang, Z.; Hai, R.; Ding, R.; Fu, S.; Wu, J.; Wen, Q. Anlotinib suppresses colorectal cancer proliferation and angiogenesis via inhibition of AKT/ERK signaling cascade. Cancer Manag. Res., 2020, 12, 4937-4948. doi: 10.2147/CMAR.S252181 PMID: 32606981
  15. Syed, Y.Y. Anlotinib: First global approval. Drugs, 2018, 78(10), 1057-1062. doi: 10.1007/s40265-018-0939-x PMID: 29943374
  16. Rushworth, S.A.; Bowles, K.M.; Barrera, L.N.; Murray, M.Y.; Zaitseva, L.; MacEwan, D.J. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κ. B. Cell. Signal., 2013, 25(1), 106-112. doi: 10.1016/j.cellsig.2012.09.008 PMID: 22975686
  17. Woyach, J.A.; Bojnik, E.; Ruppert, A.S.; Stefanovski, M.R.; Goettl, V.M.; Smucker, K.A.; Smith, L.L.; Dubovsky, J.A.; Towns, W.H.; MacMurray, J.; Harrington, B.K.; Davis, M.E.; Gobessi, S.; Laurenti, L.; Chang, B.Y.; Buggy, J.J.; Efremov, D.G.; Byrd, J.C.; Johnson, A.J. Bruton's tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood, 2014, 123(8), 1207-1213. doi: 10.1182/blood-2013-07-515361 PMID: 24311722
  18. Zaitseva, L.; Murray, M.Y.; Shafat, M.S.; Lawes, M.J.; MacEwan, D.J.; Bowles, K.M.; Rushworth, S.A. Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML. Oncotarget, 2014, 5(20), 9930-9938. doi: 10.18632/oncotarget.2479 PMID: 25294819
  19. Kim, E.; Hurtz, C.; Koehrer, S.; Wang, Z.; Balasubramanian, S.; Chang, B.Y.; Müschen, M.; Davis, R.E.; Burger, J.A. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood, 2017, 129(9), 1155-1165. doi: 10.1182/blood-2016-06-722900 PMID: 28031181
  20. Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J., 2017, 7(6), e577. doi: 10.1038/bcj.2017.53 PMID: 28665419
  21. Xie, C.; Wan, X.; Quan, H.; Zheng, M.; Fu, L.; Li, Y.; Lou, L. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor‐2 inhibitor. Cancer Sci., 2018, 109(4), 1207-1219. doi: 10.1111/cas.13536 PMID: 29446853
  22. Neri, L.M.; Cani, A.; Martelli, A.M.; Simioni, C.; Junghanss, C.; Tabellini, G.; Ricci, F.; Tazzari, P.L.; Pagliaro, P.; McCubrey, J.A.; Capitani, S. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia, 2014, 28(4), 739-748. doi: 10.1038/leu.2013.226 PMID: 23892718
  23. Evangelisti, C.; Chiarini, F.; Cappellini, A.; Paganelli, F.; Fini, M.; Santi, S.; Martelli, A.M.; Neri, L.M.; Evangelisti, C. Targeting Wnt/β‐catenin and PI3K/Akt/mTOR pathways in T‐cell acute lymphoblastic leukemia. J. Cell. Physiol., 2020, 235(6), 5413-5428. doi: 10.1002/jcp.29429 PMID: 31904116
  24. Naderali, E.; Valipour, B.; Khaki, A.A.; Soleymani Rad, J.; Alihemmati, A.; Rahmati, M.; Nozad Charoudeh, H. Positive effects of PI3K/Akt signaling inhibition on PTEN and P53 in prevention of acute lymphoblastic leukemia tumor cells. Adv. Pharm. Bull., 2019, 9(3), 470-480. doi: 10.15171/apb.2019.056 PMID: 31592121
  25. Han, J.; Lin, M.; Zhou, D.; Zhang, Z.; Jin, R.; Zhou, F. Huang Qi Huai granules induce apoptosis in acute lymphoblastic leukemia cells through the Akt/FoxO1 pathway. Cell. Physiol. Biochem., 2016, 38(5), 1803-1814. doi: 10.1159/000443119 PMID: 27160160
  26. Altman, J.K.; Sassano, A.; Platanias, L.C. Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget, 2011, 2(6), 510-517. doi: 10.18632/oncotarget.290 PMID: 21680954
  27. Sokolosky, M.L.; Stadelman, K.M.; Chappell, W.H.; Abrams, S.L.; Martelli, A.M.; Stivala, F.; Libra, M.; Nicoletti, F.; Drobot, L.B.; Franklin, R.A.; Steelman, L.S.; McCubrey, J.A. Involvement of Akt-1 and mTOR in sensitivity of breast cancer to targeted therapy. Oncotarget, 2011, 2(7), 538-550. doi: 10.18632/oncotarget.302 PMID: 21730367
  28. Chen, J.; Feng, J.; Fang, Z.; Ye, J.; Chen, Q.; Chen, Q.; Chen, K.; Xiong, X.; Li, G.; Song, H.; Xu, B. Anlotinib suppresses MLL-rearranged acute myeloid leukemia cell growth by inhibiting SETD1A/AKT-mediated DNA damage response. Am. J. Transl. Res., 2021, 13(3), 1494-1504. PMID: 33841673
  29. Inaba, H.; Pui, C.H. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev., 2019, 38(4), 595-610. doi: 10.1007/s10555-019-09834-0 PMID: 31811553
  30. Siegler, E.L.; Kenderian, S.S. Neurotoxicity and cytokine release syndrome after chimeric antigen receptor T cell therapy: Insights into mechanisms and novel therapies. Front. Immunol., 2020, 11, 1973. doi: 10.3389/fimmu.2020.01973 PMID: 32983132
  31. Zeng, W.; Zhang, P. Resistance and recurrence of malignancies after CAR-T cell therapy. Exp. Cell Res., 2022, 410(2), 112971. doi: 10.1016/j.yexcr.2021.112971 PMID: 34906583
  32. Su, Y.; Luo, B.; Lu, Y.; Wang, D.; Yan, J.; Zheng, J.; Xiao, J.; Wang, Y.; Xue, Z.; Yin, J.; Chen, P.; Li, L.; Zhao, Q. Anlotinib induces a T cell–inflamed tumor microenvironment by facilitating vessel normalization and enhances the efficacy of PD-1 checkpoint blockade in neuroblastoma. Clin. Cancer Res., 2022, 28(4), 793-809. doi: 10.1158/1078-0432.CCR-21-2241 PMID: 34844980

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers