A Promising Paradigm Shift in Cancer Treatment with FGFR Inhibitors


Citar

Texto integral

Resumo

FGFR have been demonstrated to perform a crucial role in biological processes but their overexpression has been perceived as the operator component in the occurrence and progression of different types of carcinoma. Out of all the interest around cancer, FGFR inhibitors have assembled pace over the past few years. Therefore, FGFR inhibitors are one of the main fundamental tools to reverse drug resistance, tumor growth, and angiogenesis. Currently, many FGFR inhibitors are under the development stage or have been developed. Due to great demand and hotspots, different pharmacophores were approached to access structurally diverse FGFR inhibitors. Here, we have selected to present several representative examples such as Naphthyl, Pyrimidine, Pyridazine, Indole, and Quinoline derivatives that illustrate the diversity and advances of FGFR inhibitors in medicinal chemistry. This review focuses on the SAR study of FGFR inhibitors last five years which will be a great future scope that influences the medicinal chemist to work towards more achievements in this area.

Sobre autores

Anuradha Mehra

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Rekha Sangwan

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Mehra, A.; Sharma, V.; Verma, A.; Venugopal, S.; Mittal, A.; Singh, G.; Kaur, B. Indole derived anticancer agents. ChemistrySelect, 2022, 7(34), e202202361. doi: 10.1002/slct.202202361
  2. Lind, J.; Czernilofsky, F.; Vallet, S.; Podar, K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin. Emerg. Drugs, 2019, 24(3), 133-152. doi: 10.1080/14728214.2019.1647165 PMID: 31327278
  3. Venugopal, S.; Sharma, V.; Mehra, A.; Singh, I.; Singh, G. DNA intercalators as anticancer agents. Chem. Biol. Drug Des., 2022, 100(4), 580-598. doi: 10.1111/cbdd.14116 PMID: 35822451
  4. (a) Powers, C.J.; McLeskey, S.W.; Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer, 2000, 7(3), 165-197. doi: 10.1677/erc.0.0070165 PMID: 11021964; (b) Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; Chen, H.; Sun, X.; Feng, J.Q.; Qi, H.; Chen, L. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther., 2020, 5(1), 181. doi: 10.1038/s41392-020-00222-7 PMID: 32879300; (c) Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694. doi: 10.1158/1078-0432.CCR-14-2329 PMID: 26078430
  5. Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468. doi: 10.1007/s10495-013-0886-7 PMID: 23900974
  6. Mossahebi-Mohammadi, M.; Quan, M.; Zhang, J.S.; Li, X. FGF signaling pathway: A key regulator of stem cell pluripotency. Front. Cell Dev. Biol., 2020, 8, 79. doi: 10.3389/fcell.2020.00079 PMID: 32133359
  7. Procaccio, L.; Damuzzo, V.; Di Sarra, F.; Russi, A.; Todino, F.; Dadduzio, V.; Bergamo, F.; Prete, A.A.; Lonardi, S.; Prenen, H.; Palozzo, A.C.; Loupakis, F. Safety and tolerability of anti-angiogenic protein kinase inhibitors and vascular-disrupting agents in cancer: Focus on gastrointestinal malignancies. Drug Saf., 2019, 42(2), 159-179. doi: 10.1007/s40264-018-0776-6 PMID: 30649744
  8. Bovée, J.V.M.G.; Hogendoorn, P.C.W. Non‐ossifying fibroma: A RAS‐MAPK driven benign bone neoplasm. J. Pathol., 2019, 248(2), 127-130. doi: 10.1002/path.5259 PMID: 30809793
  9. Tu, Y.; Qu, T.; Chen, F. Mutant hFGF23(A12D) stimulates osteoblast differentiation through FGFR3. J. Cell. Mol. Med., 2019, 23(4), 2933-2942. doi: 10.1111/jcmm.14201
  10. Chae, Y.K.; Ranganath, K.; Hammerman, P.S.; Vaklavas, C.; Mohindra, N.; Kalyan, A.; Matsangou, M.; Costa, R.; Carneiro, B.; Villaflor, V.M.; Cristofanilli, M.; Giles, F.J. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: The current landscape and barriers to clinical application. Oncotarget, 2017, 8(9), 16052-16074. doi: 10.18632/oncotarget.14109 PMID: 28030802
  11. Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 2005, 16(2), 139-149. doi: 10.1016/j.cytogfr.2005.01.001 PMID: 15863030
  12. Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129. doi: 10.1038/nrc2780 PMID: 20094046
  13. Dong, Q.; Li, S.; Wang, W.; Han, L.; Xia, Z.; Wu, Y.; Tang, Y.; Li, J.; Cheng, X. FGF23 regulates atrial fibrosis in atrial fibrillation by mediating the STAT3 and SMAD3 pathways. J. Cell. Physiol., 2019, 234(11), 19502-19510. doi: 10.1002/jcp.28548 PMID: 30953354
  14. Goetz, R.; Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol., 2013, 14(3), 166-180. doi: 10.1038/nrm3528 PMID: 23403721
  15. Dienstmann, R.; Rodon, J.; Prat, A.; Perez-Garcia, J.; Adamo, B.; Felip, E.; Cortes, J.; Iafrate, A.J.; Nuciforo, P.; Tabernero, J. Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann. Oncol., 2014, 25(3), 552-563. doi: 10.1093/annonc/mdt419 PMID: 24265351
  16. Helsten, T.; Elkin, S.; Arthur, E.; Tomson, B.N.; Carter, J.; Kurzrock, R. The FGFR landscape in cancer: Analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res., 2016, 22(1), 259-267. doi: 10.1158/1078-0432.CCR-14-3212 PMID: 26373574
  17. Tiseo, M.; Gelsomino, F.; Alfieri, R.; Cavazzoni, A.; Bozzetti, C.; De Giorgi, A.M.; Petronini, P.G.; Ardizzoni, A. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat. Rev., 2015, 41(6), 527-539. doi: 10.1016/j.ctrv.2015.04.011 PMID: 25959741
  18. Hallinan, N.; Finn, S.; Cuffe, S.; Rafee, S.; O’Byrne, K.; Gately, K. Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat. Rev., 2016, 46, 51-62. doi: 10.1016/j.ctrv.2016.03.015 PMID: 27109926
  19. Gauglhofer, C.; Paur, J.; Schrottmaier, W.C.; Wingelhofer, B.; Huber, D.; Naegelen, I.; Pirker, C.; Mohr, T.; Heinzle, C.; Holzmann, K.; Marian, B.; Schulte-Hermann, R.; Berger, W.; Krupitza, G.; Grusch, M.; Grasl-Kraupp, B. Fibroblast growth factor receptor 4: A putative key driver for the aggressive phenotype of hepatocellular carcinoma. Carcinogenesis, 2014, 35(10), 2331-2338. doi: 10.1093/carcin/bgu151 PMID: 25031272
  20. Manchado, E.; Weissmueller, S.; Morris, J.P., IV; Chen, C.C.; Wullenkord, R.; Lujambio, A.; de Stanchina, E.; Poirier, J.T.; Gainor, J.F.; Corcoran, R.B.; Engelman, J.A.; Rudin, C.M.; Rosen, N.; Lowe, S.W. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature, 2016, 534(7609), 647-651. doi: 10.1038/nature18600 PMID: 27338794
  21. Li, F.; Huynh, H.; Li, X.; Ruddy, D.A.; Wang, Y.; Ong, R.; Chow, P.; Qiu, S.; Tam, A.; Rakiec, D.P.; Schlegel, R.; Monahan, J.E.; Huang, A. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov., 2015, 5(4), 438-451. doi: 10.1158/2159-8290.CD-14-0763 PMID: 25673643
  22. Sinha, S.; Boysen, J.; Nelson, M.; Warner, S.L.; Bearss, D.; Kay, N.E.; Ghosh, A.K. Axl activates fibroblast growth factor receptor pathway to potentiate survival signals in B-cell chronic lymphocytic leukemia cells. Leukemia, 2016, 30(6), 1431-1436. doi: 10.1038/leu.2015.323 PMID: 26598018
  23. Turner, N.; Pearson, A.; Sharpe, R.; Lambros, M.; Geyer, F.; Lopez-Garcia, M.A.; Natrajan, R.; Marchio, C.; Iorns, E.; Mackay, A.; Gillett, C.; Grigoriadis, A.; Tutt, A.; Reis-Filho, J.S.; Ashworth, A. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res., 2010, 70(5), 2085-2094. doi: 10.1158/0008-5472.CAN-09-3746 PMID: 20179196
  24. Yadav, V.; Zhang, X.; Liu, J.; Estrem, S.; Li, S.; Gong, X.Q.; Buchanan, S.; Henry, J.R.; Starling, J.J.; Peng, S.B. Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J. Biol. Chem., 2012, 287(33), 28087-28098. doi: 10.1074/jbc.M112.377218 PMID: 22730329
  25. Porta, R.; Borea, R.; Coelho, A.; Khan, S.; Araújo, A.; Reclusa, P.; Franchina, T.; Van Der Steen, N.; Van Dam, P.; Ferri, J.; Sirera, R.; Naing, A.; Hong, D.; Rolfo, C. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit. Rev. Oncol. Hematol., 2017, 113, 256-267. doi: 10.1016/j.critrevonc.2017.02.018 PMID: 28427515
  26. van Rhijn, B.W.G.; van Tilborg, A.A.G.; Lurkin, I.; Bonaventure, J.; de Vries, A.; Thiery, J.P.; van der Kwast, T.H.; Zwarthoff, E.C.; Radvanyi, F. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur. J. Hum. Genet., 2002, 10(12), 819-824. doi: 10.1038/sj.ejhg.5200883 PMID: 12461689
  27. Acevedo, V.D.; Ittmann, M.; Spencer, D.M. Paths of FGFR-driven tumorigenesis. Cell Cycle, 2009, 8(4), 580-588. doi: 10.4161/cc.8.4.7657 PMID: 19182515
  28. Rosty, C.; Aubriot, M.H.; Cappellen, D.; Bourdin, J.; Cartier, I.; Thiery, J.; Sastre-Garau, X.; Radvanyi, F. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation. Mol. Cancer, 2005, 4(1), 15. doi: 10.1186/1476-4598-4-15 PMID: 15869706
  29. Hernández, S.; de Muga, S.; Agell, L.; Juanpere, N.; Esgueva, R.; Lorente, J.A.; Mojal, S.; Serrano, S.; Lloreta, J. FGFR3 mutations in prostate cancer: Association with low-grade tumors. Mod. Pathol., 2009, 22(6), 848-856. doi: 10.1038/modpathol.2009.46 PMID: 19377444
  30. Sankar, K.; Gadgeel, S.M.; Qin, A. Molecular therapeutic targets in non-small cell lung cancer. Expert Rev. Anticancer Ther., 2020, 20(8), 647-661. doi: 10.1080/14737140.2020.1787156 PMID: 32580596
  31. Zhang, P.; Yue, L.; Leng, Q.; Chang, C.; Gan, C.; Ye, T.; Cao, D. Targeting FGFR for cancer therapy. J. Hematol. Oncol., 2024, 17(1), 39. doi: 10.1186/s13045-024-01558-1 PMID: 38831455
  32. Gospodarowicz, D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature, 1974, 249(5453), 123-127. doi: 10.1038/249123a0 PMID: 4364816
  33. Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253. doi: 10.1038/nrd2792 PMID: 19247306
  34. Bello, E.; Colella, G.; Scarlato, V.; Oliva, P.; Berndt, A.; Valbusa, G.; Serra, S.C.; D’Incalci, M.; Cavalletti, E.; Giavazzi, R.; Damia, G.; Camboni, G. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res., 2011, 71(4), 1396-1405. doi: 10.1158/0008-5472.CAN-10-2700 PMID: 21212416
  35. Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V. Discovery of 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1-{6-4-(4-ethyl-piperazin-1-yl)-phenylamino-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), A Potent and Selective Inhibitor of the Fibroblast Growth Factor Receptor Family of Receptor Tyrosine Kinase. J. Med. Chem., 2011, 54, 7066-7083. doi: 10.1021/jm2006222 PMID: 21936542
  36. Brooks, A.N.; Kilgour, E.; Smith, P.D. Molecular pathways: Fibroblast growth factor signaling: A new therapeutic opportunity in cancer. Clin. Cancer Res., 2012, 18(7), 1855-1862. doi: 10.1158/1078-0432.CCR-11-0699 PMID: 22388515
  37. Gavine, P.R.; Mooney, L.; Kilgour, E.; Thomas, A.P.; Al-Kadhimi, K.; Beck, S.; Rooney, C.; Coleman, T.; Baker, D.; Mellor, M.J.; Brooks, A.N.; Klinowska, T. AZD4547: An orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res., 2012, 72(8), 2045-2056. doi: 10.1158/0008-5472.CAN-11-3034 PMID: 22369928
  38. Ochiiwa, H.; Fujita, H.; Itoh, K.; Sootome, H.; Hashimoto, A.; Fujioka, Y.; Nakatsuru, Y.; Oda, N.; Yonekura, K.; Hirai, H.; Utsugi, T. Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Mol. Cancer Ther., 2013, 12(11_Supplement), A270. doi: 10.1158/1535-7163.TARG-13-A270
  39. Dransfield, D.; Lee, J.; Waghorne, C.; Bull, C.; Savage, R.E.; Zhao, X.; Yuan, S.; Chang, E.; Nakuci, E.; Eathiraj, S.; Cornell-Kennon, S.; Gu, X.; Ali, S.; Chen, C-R. Abstract A278: ARQ 087, a multi-tyrosine kinase inhibitor with potent in vitro and in vivo activity in FGFR2 driven models. Mol. Cancer Ther., 2013, 12(11_Supplement), A278. doi: 10.1158/1535-7163.TARG-13-A278
  40. Nakanishi, Y.; Akiyama, N.; Tsukaguchi, T. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol Cancer Ther, 2014, 13(11), 2547-58.
  41. Héroult, M.; Ellinghaus, P.; Sieg, C.; Brohm, D.; Gruenewald, S.; Collin, M-P.; Boemer, U.; Lobell, M.; Huebsch, W.; Ocker, M.; Ince, S.; Haegebarth, A.; Jautelat, R.; Hess-Stumpp, H.; Brands, M.; Ziegelbauer, K. Abstract 1739: Preclinical profile of BAY 1163877 - a selective pan-FGFR inhibitor in phase 1 clinical trial. Cancer Res., 2014, 74(19_Supplement), 1739. doi: 10.1158/1538-7445.AM2014-1739
  42. Porta, C.; Giglione, P.; Liguigli, W.; Paglino, C. Dovitinib (CHIR258, TKI258): Structure, development and preclinical and clinical activity. Future Oncol., 2015, 11(1), 39-50. doi: 10.2217/fon.14.208 PMID: 25572783
  43. Markham, A. Erdafitinib: First global approval. Drugs, 2019, 79(9), 1017-1021. doi: 10.1007/s40265-019-01142-9 PMID: 31161538
  44. Hoy, S.M. Pemigatinib: First approval. Drugs, 2020, 80(9), 923-929. doi: 10.1007/s40265-020-01330-y PMID: 32472305
  45. Kang, C. Infigratinib: First approval. Drugs, 2021, 81(11), 1355-1360. doi: 10.1007/s40265-021-01567-1 PMID: 34279850
  46. Syed, Y.Y. Futibatinib: First approval. Drugs, 2022, 82(18), 1737-1743. doi: 10.1007/s40265-022-01806-z PMID: 36441501
  47. Renhowe, P.A.; Pecchi, S.; Shafer, C.M.; Machajewski, T.D.; Jazan, E.M.; Taylor, C.; Antonios-McCrea, W.; McBride, C.M.; Frazier, K.; Wiesmann, M.; Lapointe, G.R.; Feucht, P.H.; Warne, R.L.; Heise, C.C.; Menezes, D.; Aardalen, K.; Ye, H.; He, M.; Le, V.; Vora, J.; Jansen, J.M.; Wernette-Hammond, M.E.; Harris, A.L. Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: A novel class of receptor tyrosine kinase inhibitors. J. Med. Chem., 2009, 52(2), 278-292. doi: 10.1021/jm800790t PMID: 19113866
  48. Gozgit, J.M.; Wong, M.J.; Moran, L.; Wardwell, S.; Mohemmad, Q.K.; Narasimhan, N.I.; Shakespeare, W.C.; Wang, F.; Clackson, T.; Rivera, V.M. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther., 2012, 11(3), 690-699. doi: 10.1158/1535-7163.MCT-11-0450 PMID: 22238366
  49. Colella, G. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann. Oncol., 2014, 25, 2244-2251.
  50. Roth, G.J.; Heckel, A.; Colbatzky, F.; Handschuh, S.; Kley, J.; Lehmann-Lintz, T.; Lotz, R.; Tontsch-Grunt, U.; Walter, R.; Hilberg, F. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J. Med. Chem., 2009, 52(14), 4466-4480. doi: 10.1021/jm900431g PMID: 19522465
  51. Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B.K.; Hubbard, S.R.; Schlessinger, J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science, 1997, 276(5314), 955-960. doi: 10.1126/science.276.5314.955 PMID: 9139660
  52. Mohammadi, M.; Froum, S.; Hamby, J.M.; Schroeder, M.C.; Panek, R.L.; Lu, G.H.; Eliseenkova, A.V.; Green, D.; Schlessinger, J.; Hubbard, S.R. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J., 1998, 17(20), 5896-5904. doi: 10.1093/emboj/17.20.5896 PMID: 9774334
  53. Hamby, J.M.; Connolly, C.J.C.; Schroeder, M.C.; Winters, R.T.; Showalter, H.D.H.; Panek, R.L.; Major, T.C.; Olsewski, B.; Ryan, M.J.; Dahring, T.; Lu, G.H.; Keiser, J.; Amar, A.; Shen, C.; Kraker, A.J.; Slintak, V.; Nelson, J.M.; Fry, D.W.; Bradford, L.; Hallak, H.; Doherty, A.M. Structure-activity relationships for a novel series of pyrido2,3-dpyrimidine tyrosine kinase inhibitors. J. Med. Chem., 1997, 40(15), 2296-2303. doi: 10.1021/jm970367n PMID: 9240345
  54. Na, Y.R.; Kim, J.Y.; Song, C.H.; Kim, M.; Do, Y.T.; Vo, T.T.L.; Choi, E.; Ha, E.; Seo, J.H.; Shin, S.J. The FGFR family inhibitor AZD4547 exerts an antitumor effect in ovarian cancer cells. Int. J. Mol. Sci., 2021, 22(19), 10817. doi: 10.3390/ijms221910817 PMID: 34639155
  55. Plimack, E.R.; LoRusso, P.M.; McCoon, P.; Tang, W.; Krebs, A.D.; Curt, G.; Eckhardt, S.G. AZD1480: A phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist, 2013, 18(7), 819-820. doi: 10.1634/theoncologist.2013-0198 PMID: 23847256
  56. Nogova, L.; Sequist, L.V.; Perez Garcia, J.M.; Andre, F.; Delord, J.P.; Hidalgo, M.; Schellens, J.H.M.; Cassier, P.A.; Camidge, D.R.; Schuler, M.; Vaishampayan, U.; Burris, H.A.; Tian, G.G.; Campone, M.; Wainberg, Z.A.; Lim, W.T.; LoRusso, P.; Shapiro, G.I.; Parker, K.; Chen, X.; Choudhury, S.; Ringeisen, F.; Graus-Porta, D.; Porter, D.; Isaacs, R.; Buettner, R.; Wolf, J. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: Results of a global phase I, dose-escalation and dose-expansion study. J. Clin. Oncol., 2017, 35(2), 157-165. doi: 10.1200/JCO.2016.67.2048 PMID: 27870574
  57. Carter, E.P.; Fearon, A.E.; Grose, R.P. Careless talk costs lives: Fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol., 2015, 25(4), 221-233. doi: 10.1016/j.tcb.2014.11.003 PMID: 25467007
  58. Cheng, W.; Wang, M.; Tian, X.; Zhang, X. An overview of the binding models of FGFR tyrosine kinases in complex with small molecule inhibitors. Eur. J. Med. Chem., 2017, 126, 476-490. doi: 10.1016/j.ejmech.2016.11.052 PMID: 27914362
  59. Traxler, P.; Furet, P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther., 1999, 82(2-3), 195-206. doi: 10.1016/S0163-7258(98)00044-8 PMID: 10454197
  60. Yosaatmadja, Y.; Patterson, A.V.; Smaill, J.B.; Squire, C.J. The 1.65 Å resolution structure of the complex of AZD4547 with the kinase domain of FGFR1 displays exquisite molecular recognition. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(3), 525-533. doi: 10.1107/S1399004714027539 PMID: 25760602
  61. Patani, H.; Bunney, T.D.; Thiyagarajan, N.; Norman, R.A.; Ogg, D.; Breed, J.; Ashford, P.; Potterton, A.; Edwards, M.; Williams, S.V.; Thomson, G.S.; Pang, C.S.M.; Knowles, M.A.; Breeze, A.L.; Orengo, C.; Phillips, C.; Katan, M. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use. Oncotarget, 2016, 7(17), 24252-24268. doi: 10.18632/oncotarget.8132 PMID: 26992226
  62. Ebiike, H.; Taka, N.; Matsushita, M.; Ohmori, M.; Takami, K.; Hyohdoh, I.; Kohchi, M.; Hayase, T.; Nishii, H.; Morikami, K.; Nakanishi, Y.; Akiyama, N.; Shindoh, H.; Ishii, N.; Isobe, T.; Matsuoka, H. Discovery of 5-amino-1-(2-methyl-3H-benzimidazol-5-yl)pyrazol-4-yl-(1H-indol-2-yl)methanone (CH5183284/Debio 1347), an orally available and selective fibroblast growth factor receptor (FGFR) inhibitor. J. Med. Chem., 2016, 59(23), 10586-10600. doi: 10.1021/acs.jmedchem.6b01156 PMID: 27933954
  63. Liang, G.; Chen, G.; Wei, X.; Zhao, Y.; Li, X. Small molecule inhibition of fibroblast growth factor receptors in cancer. Cytokine Growth Factor Rev., 2013, 24(5), 467-475. doi: 10.1016/j.cytogfr.2013.05.002 PMID: 23830577
  64. Roskoski, R., Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res., 2016, 103, 26-48. doi: 10.1016/j.phrs.2015.10.021 PMID: 26529477
  65. Tucker, J.A.; Klein, T.; Breed, J.; Breeze, A.L.; Overman, R.; Phillips, C.; Norman, R.A. Structural insights into FGFR kinase isoform selectivity: Diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure, 2014, 22(12), 1764-1774. doi: 10.1016/j.str.2014.09.019 PMID: 25465127
  66. Kufareva, I.; Abagyan, R. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J. Med. Chem., 2008, 51(24), 7921-7932. doi: 10.1021/jm8010299 PMID: 19053777
  67. Tsimafeyeu, I.; Daeyaert, F.; Yin, W.; Ludes-Meyers, J.; Byakhov, M.; Tjulandin, S. 476 FGFR2 targeting with allosteric inhibitor RPT835. Eur. J. Cancer, 2014, 50, 155. doi: 10.1016/S0959-8049(14)70602-1
  68. Hah, J.M.; Sharma, V.; Li, H.; Lawrence, D.S. Acquisition of a “Group A”-selective Src kinase inhibitor via a global targeting strategy. J. Am. Chem. Soc., 2006, 128(18), 5996-5997. doi: 10.1021/ja060136i PMID: 16669643
  69. Hill, Z.B.; Perera, B.G.K.; Maly, D.J. A chemical genetic method for generating bivalent inhibitors of protein kinases. J. Am. Chem. Soc., 2009, 131(19), 6686-6688. doi: 10.1021/ja900871y PMID: 19391594
  70. Lamba, V.; Ghosh, I. New directions in targeting protein kinases: Focusing upon true allosteric and bivalent inhibitors. Curr. Pharm. Des., 2012, 18(20), 2936-2945. doi: 10.2174/138161212800672813 PMID: 22571662
  71. Wei, M.; Peng, X.; Xing, L.; Dai, Y.; Huang, R.; Geng, M.; Zhang, A.; Ai, J.; Song, Z. Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-1-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur. J. Med. Chem., 2018, 154, 9-28. doi: 10.1016/j.ejmech.2018.05.005 PMID: 29775937
  72. Zhang, X.; Wang, Y.; Ji, J.; Si, D.; Bao, X.; Yu, Z.; Zhu, Y.; Zhao, L.; Li, W.; Liu, J. Discovery of 1,6-naphthyridin-2(1H)-one derivatives as novel, potent, and selective FGFR4 inhibitors for the treatment of hepatocellular carcinoma. J. Med. Chem., 2022, 65(11), 7595-7618. doi: 10.1021/acs.jmedchem.1c01977 PMID: 35635004
  73. Zhang, Z.; Li, J.; Chen, H.; Huang, J.; Song, X.; Tu, Z.C.; Zhang, Z.; Peng, L.; Zhou, Y.; Ding, K. Design, synthesis, and biological evaluation of 2 formyl tetrahydronaphthyridine urea derivatives as new selective covalently reversible FGFR4 inhibitors. J. Med. Chem., 2022, 65(4), 3249-3265. doi: 10.1021/acs.jmedchem.1c01816 PMID: 35119278
  74. Modh, D.H.; Modi, S.J.; Deokar, H.; Yadav, S.; Kulkarni, V.M. Fibroblast growth factor receptor (FGFR) inhibitors as anticancer agents: 3D-QSAR, molecular docking and dynamics simulation studies of 1, 6-naphthyridines and pyridopyrimidines. J. Biomol. Struct. Dyn., 2023, 41(8), 3591-3606. doi: 10.1080/07391102.2022.2053206 PMID: 35318898
  75. Ran, K.; Zeng, J.; Wan, G.; He, X.; Feng, Z.; Xiang, W.; Wei, W.; Hu, X.; Wang, N.; Liu, Z.; Yu, L. Design, synthesis and biological evaluations of a series of Pyrido1,2-apyrimidinone derivatives as novel selective FGFR inhibitors. Eur. J. Med. Chem., 2021, 220, 113499. doi: 10.1016/j.ejmech.2021.113499 PMID: 33940465
  76. Wei, Y.; Tang, Y.; Zhou, Y.; Yang, Y.; Cui, Y.; Wang, X.; Wang, Y.; Liu, Y.; Liu, N.; Wang, Q.; Li, C.; Ruan, H.; Zhou, H.; Wei, M.; Yang, G.; Yang, C. Discovery and optimization of a novel 2H-pyrazolo3,4-dpyrimidine derivative as a potent irreversible pan-fibroblast growth factor receptor inhibitor imp discovery of potent irreversible pan-fibroblast growth factor receptor (FGFR) inhibitors. J. Med. Chem., 2021, 64(13), 9078-9099. doi: 10.1021/acs.jmedchem.1c00174 PMID: 34129329
  77. Xie, W.; Yang, S.; Liang, L.; Wang, M.; Zuo, W.; Lei, Y.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y.; Jiang, Y. discovery of 2-amino-7-sulfonyl-7h-pyrrolo2,3-dpyrimidine derivatives as potent reversible FGFR inhibitors with gatekeeper mutation tolerance: Design, synthesis, and biological evaluation. J. Med. Chem., 2022, 65(24), 16570-16588. doi: 10.1021/acs.jmedchem.2c01420 PMID: 36480917
  78. Wu, L.; Zhang, C.; He, C.; Qian, D.; Lu, L.; Sun, Y.; Xu, M.; Zhuo, J.; Liu, P.C.C.; Klabe, R.; Wynn, R.; Covington, M.; Gallagher, K.; Leffet, L.; Bowman, K.; Diamond, S.; Koblish, H.; Zhang, Y.; Soloviev, M.; Hollis, G.; Burn, T.C.; Scherle, P.; Yeleswaram, S.; Huber, R.; Yao, W. Discovery of pemigatinib: A potent and selective fibroblast growth factor receptor (FGFR) inhibitor. J. Med. Chem., 2021, 64(15), 10666-10679. doi: 10.1021/acs.jmedchem.1c00713 PMID: 34269576
  79. Li, C.; Dai, Y.; Kong, X.; Wang, B.; Peng, X.; Wu, H.; Shen, Y.; Yang, Y.; Ji, Y.; Wang, D.; Li, S.; Li, X.; Shi, Y.; Geng, M.; Zheng, M.; Ai, J.; Liu, H. Structural optimization of fibroblast growth factor receptor inhibitors for treating solid tumors. J. Med. Chem., 2023, 66(5), 3226-3249. doi: 10.1021/acs.jmedchem.2c01507 PMID: 36802596
  80. Shvartsbart, A.; Roach, J.J.; Witten, M.R.; Koblish, H.; Harris, J.J.; Covington, M.; Hess, R.; Lin, L.; Frascella, M.; Truong, L.; Leffet, L.; Conlen, P.; Beshad, E.; Klabe, R.; Katiyar, K.; Kaldon, L.; Young-Sciame, R.; He, X.; Petusky, S.; Chen, K.J.; Horsey, A.; Lei, H.T.; Epling, L.B.; Deller, M.C.; Vechorkin, O.; Yao, W. Discovery of potent and selective inhibitors of wild-type and gatekeeper mutant fibroblast growth factor receptor (FGFR) 2/3. J. Med. Chem., 2022, 65(22), 15433-15442. doi: 10.1021/acs.jmedchem.2c01366 PMID: 36356320
  81. Wang, Y.; Dai, Y.; Wu, X.; Li, F.; Liu, B.; Li, C.; Liu, Q.; Zhou, Y.; Wang, B.; Zhu, M.; Cui, R.; Tan, X.; Xiong, Z.; Liu, J.; Tan, M.; Xu, Y.; Geng, M.; Jiang, H.; Liu, H.; Ai, J.; Zheng, M. Discovery and development of a series of pyrazolo3,4-dpyridazinone compounds as the novel covalent fibroblast growth factor receptor inhibitors by the rational drug design. J. Med. Chem., 2019, 62(16), 7473-7488. doi: 10.1021/acs.jmedchem.9b00510 PMID: 31335138
  82. Chen, X.; Liu, Y.; Zhang, L.; Chen, D.; Dong, Z.; Zhao, C.; Liu, Z.; Xia, Q.; Wu, J.; Chen, Y.; Zheng, X.; Cai, Y. Design, synthesis, and biological evaluation of indazole derivatives as selective and potent FGFR4 inhibitors for the treatment of FGF19-driven hepatocellular cancer. Eur. J. Med. Chem., 2021, 214, 113219. doi: 10.1016/j.ejmech.2021.113219 PMID: 33618175
  83. Shao, M.; Chen, X.; Yang, F.; Song, X.; Zhou, Y.; Lin, Q.; Fu, Y.; Ortega, R.; Lin, X.; Tu, Z.; Patterson, A.V.; Smaill, J.B.; Chen, Y.; Lu, X. Design, synthesis, and biological evaluation of aminoindazole derivatives as highly selective covalent inhibitors of wild-type and gatekeeper mutant FGFR4. J. Med. Chem., 2022, 65(6), 5113-5133. doi: 10.1021/acs.jmedchem.2c00096 PMID: 35271262
  84. Zhong, Z.; Shi, L.; Fu, T.; Huang, J.; Pan, Z. Discovery of novel 7-azaindole derivatives as selective covalent fibroblast growth factor receptor 4 inhibitors for the treatment of hepatocellular carcinoma. J. Med. Chem., 2022, 65(10), 7278-7295. doi: 10.1021/acs.jmedchem.2c00255 PMID: 35549181
  85. Eldehna, W.M.; El Kerdawy, A.M.; Al-Ansary, G.H.; Al-Rashood, S.T.; Ali, M.M.; Mahmoud, A.E. Type IIA - Type IIB protein tyrosine kinase inhibitors hybridization as an efficient approach for potent multikinase inhibitor development: Design, synthesis, anti-proliferative activity, multikinase inhibitory activity and molecular modeling of novel indolinone-based ureides and amides. Eur. J. Med. Chem., 2019, 163, 37-53. doi: 10.1016/j.ejmech.2018.11.061 PMID: 30503942
  86. Takamura, T.; Horinaka, M.; Yasuda, S.; Toriyama, S.; Aono, Y.; Sowa, Y.; Miki, T.; Ukimura, O.; Sakai, T. FGFR inhibitor BGJ398 and HDAC inhibitor OBP-801 synergistically inhibit cell growth and induce apoptosis in bladder cancer cells. Oncol. Rep., 2018, 39(2), 627-632. PMID: 29207153
  87. Wan, G.; Feng, Z.; Zhang, Q.; Li, X.; Ran, K.; Feng, H.; Luo, T.; Zhou, S.; Su, C.; Wei, W.; Wang, N.; Gao, C.; Zhao, L.; Yu, L. Design and synthesis of fibroblast growth factor receptor (FGFR) and histone deacetylase (HDAC) dual inhibitors for the treatment of cancer. J. Med. Chem., 2022, 65(24), 16541-16569. doi: 10.1021/acs.jmedchem.2c01413 PMID: 36449947
  88. Pan, C.; Nie, W.; Wang, J.; Du, J.; Pan, Z.; Gao, J.; Lu, Y.; Che, J.; Zhu, H.; Dai, H.; Chen, B.; He, Q.; Dong, X. Design, synthesis and biological evaluation of quinazoline derivatives as potent and selective FGFR4 inhibitors. Eur. J. Med. Chem., 2021, 225, 113794. doi: 10.1016/j.ejmech.2021.113794 PMID: 34488024
  89. Yang, F.; Chen, X.; Song, X.; Ortega, R.; Lin, X.; Deng, W.; Guo, J.; Tu, Z.; Patterson, A.V.; Smaill, J.B.; Chen, Y.; Lu, X. Design, synthesis, and biological evaluation of 5-formyl pyrrolo 3,2-bpyridine-3-carboxamides as new selective, potent, and reversible-covalent FGFR4 inhibitors. J. Med. Chem., 2022, 65(21), 14809-14831. doi: 10.1021/acs.jmedchem.2c01319 PMID: 36278929
  90. Yamani, A.; Zdżalik-Bielecka, D.; Lipner, J.; Stańczak, A.; Piórkowska, N.; Stańczak, P.S.; Olejkowska, P.; Hucz-Kalitowska, J.; Magdycz, M.; Dzwonek, K.; Dubiel, K.; Lamparska-Przybysz, M.; Popiel, D.; Pieczykolan, J.; Wieczorek, M. Discovery and optimization of novel pyrazole-benzimidazole CPL304110, as a potent and selective inhibitor of fibroblast growth factor receptors FGFR (1–3). Eur. J. Med. Chem., 2021, 210, 112990. doi: 10.1016/j.ejmech.2020.112990 PMID: 33199155
  91. Ying, S.; Du, X.; Fu, W.; Yun, D.; Chen, L.; Cai, Y.; Xu, Q.; Wu, J.; Li, W.; Liang, G. Synthesis, biological evaluation, QSAR and molecular dynamics simulation studies of potential fibroblast growth factor receptor 1 inhibitors for the treatment of gastric cancer. Eur. J. Med. Chem., 2017, 127, 885-899. doi: 10.1016/j.ejmech.2016.10.066 PMID: 27829519
  92. Ma, L.; Li, Y.; Luo, R.; Wang, Y.; Cao, J.; Fu, W.; Qian, B.; Zheng, L.; Tang, L.; Lv, X.; Zheng, L.; Liang, G.; Chen, L. Discovery of a selective and orally bioavailable FGFR2 degrader for treating gastric cancer. J. Med. Chem., 2023, 66(11), 7438-7453. doi: 10.1021/acs.jmedchem.3c00150 PMID: 37220310

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2025