A Promising Paradigm Shift in Cancer Treatment with FGFR Inhibitors
- 作者: Mehra A.1, Sangwan R.1
-
隶属关系:
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University
- 期: 卷 25, 编号 1 (2025)
- 页面: 2-23
- 栏目: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694410
- DOI: https://doi.org/10.2174/0118715206318833240819031953
- ID: 694410
如何引用文章
全文:
详细
FGFR have been demonstrated to perform a crucial role in biological processes but their overexpression has been perceived as the operator component in the occurrence and progression of different types of carcinoma. Out of all the interest around cancer, FGFR inhibitors have assembled pace over the past few years. Therefore, FGFR inhibitors are one of the main fundamental tools to reverse drug resistance, tumor growth, and angiogenesis. Currently, many FGFR inhibitors are under the development stage or have been developed. Due to great demand and hotspots, different pharmacophores were approached to access structurally diverse FGFR inhibitors. Here, we have selected to present several representative examples such as Naphthyl, Pyrimidine, Pyridazine, Indole, and Quinoline derivatives that illustrate the diversity and advances of FGFR inhibitors in medicinal chemistry. This review focuses on the SAR study of FGFR inhibitors last five years which will be a great future scope that influences the medicinal chemist to work towards more achievements in this area.
关键词
作者简介
Anuradha Mehra
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University
Email: info@benthamscience.net
Rekha Sangwan
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Mehra, A.; Sharma, V.; Verma, A.; Venugopal, S.; Mittal, A.; Singh, G.; Kaur, B. Indole derived anticancer agents. ChemistrySelect, 2022, 7(34), e202202361. doi: 10.1002/slct.202202361
- Lind, J.; Czernilofsky, F.; Vallet, S.; Podar, K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin. Emerg. Drugs, 2019, 24(3), 133-152. doi: 10.1080/14728214.2019.1647165 PMID: 31327278
- Venugopal, S.; Sharma, V.; Mehra, A.; Singh, I.; Singh, G. DNA intercalators as anticancer agents. Chem. Biol. Drug Des., 2022, 100(4), 580-598. doi: 10.1111/cbdd.14116 PMID: 35822451
- (a) Powers, C.J.; McLeskey, S.W.; Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer, 2000, 7(3), 165-197. doi: 10.1677/erc.0.0070165 PMID: 11021964; (b) Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; Chen, H.; Sun, X.; Feng, J.Q.; Qi, H.; Chen, L. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther., 2020, 5(1), 181. doi: 10.1038/s41392-020-00222-7 PMID: 32879300; (c) Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694. doi: 10.1158/1078-0432.CCR-14-2329 PMID: 26078430
- Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468. doi: 10.1007/s10495-013-0886-7 PMID: 23900974
- Mossahebi-Mohammadi, M.; Quan, M.; Zhang, J.S.; Li, X. FGF signaling pathway: A key regulator of stem cell pluripotency. Front. Cell Dev. Biol., 2020, 8, 79. doi: 10.3389/fcell.2020.00079 PMID: 32133359
- Procaccio, L.; Damuzzo, V.; Di Sarra, F.; Russi, A.; Todino, F.; Dadduzio, V.; Bergamo, F.; Prete, A.A.; Lonardi, S.; Prenen, H.; Palozzo, A.C.; Loupakis, F. Safety and tolerability of anti-angiogenic protein kinase inhibitors and vascular-disrupting agents in cancer: Focus on gastrointestinal malignancies. Drug Saf., 2019, 42(2), 159-179. doi: 10.1007/s40264-018-0776-6 PMID: 30649744
- Bovée, J.V.M.G.; Hogendoorn, P.C.W. Non‐ossifying fibroma: A RAS‐MAPK driven benign bone neoplasm. J. Pathol., 2019, 248(2), 127-130. doi: 10.1002/path.5259 PMID: 30809793
- Tu, Y.; Qu, T.; Chen, F. Mutant hFGF23(A12D) stimulates osteoblast differentiation through FGFR3. J. Cell. Mol. Med., 2019, 23(4), 2933-2942. doi: 10.1111/jcmm.14201
- Chae, Y.K.; Ranganath, K.; Hammerman, P.S.; Vaklavas, C.; Mohindra, N.; Kalyan, A.; Matsangou, M.; Costa, R.; Carneiro, B.; Villaflor, V.M.; Cristofanilli, M.; Giles, F.J. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: The current landscape and barriers to clinical application. Oncotarget, 2017, 8(9), 16052-16074. doi: 10.18632/oncotarget.14109 PMID: 28030802
- Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 2005, 16(2), 139-149. doi: 10.1016/j.cytogfr.2005.01.001 PMID: 15863030
- Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129. doi: 10.1038/nrc2780 PMID: 20094046
- Dong, Q.; Li, S.; Wang, W.; Han, L.; Xia, Z.; Wu, Y.; Tang, Y.; Li, J.; Cheng, X. FGF23 regulates atrial fibrosis in atrial fibrillation by mediating the STAT3 and SMAD3 pathways. J. Cell. Physiol., 2019, 234(11), 19502-19510. doi: 10.1002/jcp.28548 PMID: 30953354
- Goetz, R.; Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol., 2013, 14(3), 166-180. doi: 10.1038/nrm3528 PMID: 23403721
- Dienstmann, R.; Rodon, J.; Prat, A.; Perez-Garcia, J.; Adamo, B.; Felip, E.; Cortes, J.; Iafrate, A.J.; Nuciforo, P.; Tabernero, J. Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann. Oncol., 2014, 25(3), 552-563. doi: 10.1093/annonc/mdt419 PMID: 24265351
- Helsten, T.; Elkin, S.; Arthur, E.; Tomson, B.N.; Carter, J.; Kurzrock, R. The FGFR landscape in cancer: Analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res., 2016, 22(1), 259-267. doi: 10.1158/1078-0432.CCR-14-3212 PMID: 26373574
- Tiseo, M.; Gelsomino, F.; Alfieri, R.; Cavazzoni, A.; Bozzetti, C.; De Giorgi, A.M.; Petronini, P.G.; Ardizzoni, A. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat. Rev., 2015, 41(6), 527-539. doi: 10.1016/j.ctrv.2015.04.011 PMID: 25959741
- Hallinan, N.; Finn, S.; Cuffe, S.; Rafee, S.; O’Byrne, K.; Gately, K. Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat. Rev., 2016, 46, 51-62. doi: 10.1016/j.ctrv.2016.03.015 PMID: 27109926
- Gauglhofer, C.; Paur, J.; Schrottmaier, W.C.; Wingelhofer, B.; Huber, D.; Naegelen, I.; Pirker, C.; Mohr, T.; Heinzle, C.; Holzmann, K.; Marian, B.; Schulte-Hermann, R.; Berger, W.; Krupitza, G.; Grusch, M.; Grasl-Kraupp, B. Fibroblast growth factor receptor 4: A putative key driver for the aggressive phenotype of hepatocellular carcinoma. Carcinogenesis, 2014, 35(10), 2331-2338. doi: 10.1093/carcin/bgu151 PMID: 25031272
- Manchado, E.; Weissmueller, S.; Morris, J.P., IV; Chen, C.C.; Wullenkord, R.; Lujambio, A.; de Stanchina, E.; Poirier, J.T.; Gainor, J.F.; Corcoran, R.B.; Engelman, J.A.; Rudin, C.M.; Rosen, N.; Lowe, S.W. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature, 2016, 534(7609), 647-651. doi: 10.1038/nature18600 PMID: 27338794
- Li, F.; Huynh, H.; Li, X.; Ruddy, D.A.; Wang, Y.; Ong, R.; Chow, P.; Qiu, S.; Tam, A.; Rakiec, D.P.; Schlegel, R.; Monahan, J.E.; Huang, A. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov., 2015, 5(4), 438-451. doi: 10.1158/2159-8290.CD-14-0763 PMID: 25673643
- Sinha, S.; Boysen, J.; Nelson, M.; Warner, S.L.; Bearss, D.; Kay, N.E.; Ghosh, A.K. Axl activates fibroblast growth factor receptor pathway to potentiate survival signals in B-cell chronic lymphocytic leukemia cells. Leukemia, 2016, 30(6), 1431-1436. doi: 10.1038/leu.2015.323 PMID: 26598018
- Turner, N.; Pearson, A.; Sharpe, R.; Lambros, M.; Geyer, F.; Lopez-Garcia, M.A.; Natrajan, R.; Marchio, C.; Iorns, E.; Mackay, A.; Gillett, C.; Grigoriadis, A.; Tutt, A.; Reis-Filho, J.S.; Ashworth, A. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res., 2010, 70(5), 2085-2094. doi: 10.1158/0008-5472.CAN-09-3746 PMID: 20179196
- Yadav, V.; Zhang, X.; Liu, J.; Estrem, S.; Li, S.; Gong, X.Q.; Buchanan, S.; Henry, J.R.; Starling, J.J.; Peng, S.B. Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J. Biol. Chem., 2012, 287(33), 28087-28098. doi: 10.1074/jbc.M112.377218 PMID: 22730329
- Porta, R.; Borea, R.; Coelho, A.; Khan, S.; Araújo, A.; Reclusa, P.; Franchina, T.; Van Der Steen, N.; Van Dam, P.; Ferri, J.; Sirera, R.; Naing, A.; Hong, D.; Rolfo, C. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit. Rev. Oncol. Hematol., 2017, 113, 256-267. doi: 10.1016/j.critrevonc.2017.02.018 PMID: 28427515
- van Rhijn, B.W.G.; van Tilborg, A.A.G.; Lurkin, I.; Bonaventure, J.; de Vries, A.; Thiery, J.P.; van der Kwast, T.H.; Zwarthoff, E.C.; Radvanyi, F. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur. J. Hum. Genet., 2002, 10(12), 819-824. doi: 10.1038/sj.ejhg.5200883 PMID: 12461689
- Acevedo, V.D.; Ittmann, M.; Spencer, D.M. Paths of FGFR-driven tumorigenesis. Cell Cycle, 2009, 8(4), 580-588. doi: 10.4161/cc.8.4.7657 PMID: 19182515
- Rosty, C.; Aubriot, M.H.; Cappellen, D.; Bourdin, J.; Cartier, I.; Thiery, J.; Sastre-Garau, X.; Radvanyi, F. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation. Mol. Cancer, 2005, 4(1), 15. doi: 10.1186/1476-4598-4-15 PMID: 15869706
- Hernández, S.; de Muga, S.; Agell, L.; Juanpere, N.; Esgueva, R.; Lorente, J.A.; Mojal, S.; Serrano, S.; Lloreta, J. FGFR3 mutations in prostate cancer: Association with low-grade tumors. Mod. Pathol., 2009, 22(6), 848-856. doi: 10.1038/modpathol.2009.46 PMID: 19377444
- Sankar, K.; Gadgeel, S.M.; Qin, A. Molecular therapeutic targets in non-small cell lung cancer. Expert Rev. Anticancer Ther., 2020, 20(8), 647-661. doi: 10.1080/14737140.2020.1787156 PMID: 32580596
- Zhang, P.; Yue, L.; Leng, Q.; Chang, C.; Gan, C.; Ye, T.; Cao, D. Targeting FGFR for cancer therapy. J. Hematol. Oncol., 2024, 17(1), 39. doi: 10.1186/s13045-024-01558-1 PMID: 38831455
- Gospodarowicz, D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature, 1974, 249(5453), 123-127. doi: 10.1038/249123a0 PMID: 4364816
- Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253. doi: 10.1038/nrd2792 PMID: 19247306
- Bello, E.; Colella, G.; Scarlato, V.; Oliva, P.; Berndt, A.; Valbusa, G.; Serra, S.C.; D’Incalci, M.; Cavalletti, E.; Giavazzi, R.; Damia, G.; Camboni, G. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res., 2011, 71(4), 1396-1405. doi: 10.1158/0008-5472.CAN-10-2700 PMID: 21212416
- Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V. Discovery of 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1-{6-4-(4-ethyl-piperazin-1-yl)-phenylamino-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), A Potent and Selective Inhibitor of the Fibroblast Growth Factor Receptor Family of Receptor Tyrosine Kinase. J. Med. Chem., 2011, 54, 7066-7083. doi: 10.1021/jm2006222 PMID: 21936542
- Brooks, A.N.; Kilgour, E.; Smith, P.D. Molecular pathways: Fibroblast growth factor signaling: A new therapeutic opportunity in cancer. Clin. Cancer Res., 2012, 18(7), 1855-1862. doi: 10.1158/1078-0432.CCR-11-0699 PMID: 22388515
- Gavine, P.R.; Mooney, L.; Kilgour, E.; Thomas, A.P.; Al-Kadhimi, K.; Beck, S.; Rooney, C.; Coleman, T.; Baker, D.; Mellor, M.J.; Brooks, A.N.; Klinowska, T. AZD4547: An orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res., 2012, 72(8), 2045-2056. doi: 10.1158/0008-5472.CAN-11-3034 PMID: 22369928
- Ochiiwa, H.; Fujita, H.; Itoh, K.; Sootome, H.; Hashimoto, A.; Fujioka, Y.; Nakatsuru, Y.; Oda, N.; Yonekura, K.; Hirai, H.; Utsugi, T. Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Mol. Cancer Ther., 2013, 12(11_Supplement), A270. doi: 10.1158/1535-7163.TARG-13-A270
- Dransfield, D.; Lee, J.; Waghorne, C.; Bull, C.; Savage, R.E.; Zhao, X.; Yuan, S.; Chang, E.; Nakuci, E.; Eathiraj, S.; Cornell-Kennon, S.; Gu, X.; Ali, S.; Chen, C-R. Abstract A278: ARQ 087, a multi-tyrosine kinase inhibitor with potent in vitro and in vivo activity in FGFR2 driven models. Mol. Cancer Ther., 2013, 12(11_Supplement), A278. doi: 10.1158/1535-7163.TARG-13-A278
- Nakanishi, Y.; Akiyama, N.; Tsukaguchi, T. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol Cancer Ther, 2014, 13(11), 2547-58.
- Héroult, M.; Ellinghaus, P.; Sieg, C.; Brohm, D.; Gruenewald, S.; Collin, M-P.; Boemer, U.; Lobell, M.; Huebsch, W.; Ocker, M.; Ince, S.; Haegebarth, A.; Jautelat, R.; Hess-Stumpp, H.; Brands, M.; Ziegelbauer, K. Abstract 1739: Preclinical profile of BAY 1163877 - a selective pan-FGFR inhibitor in phase 1 clinical trial. Cancer Res., 2014, 74(19_Supplement), 1739. doi: 10.1158/1538-7445.AM2014-1739
- Porta, C.; Giglione, P.; Liguigli, W.; Paglino, C. Dovitinib (CHIR258, TKI258): Structure, development and preclinical and clinical activity. Future Oncol., 2015, 11(1), 39-50. doi: 10.2217/fon.14.208 PMID: 25572783
- Markham, A. Erdafitinib: First global approval. Drugs, 2019, 79(9), 1017-1021. doi: 10.1007/s40265-019-01142-9 PMID: 31161538
- Hoy, S.M. Pemigatinib: First approval. Drugs, 2020, 80(9), 923-929. doi: 10.1007/s40265-020-01330-y PMID: 32472305
- Kang, C. Infigratinib: First approval. Drugs, 2021, 81(11), 1355-1360. doi: 10.1007/s40265-021-01567-1 PMID: 34279850
- Syed, Y.Y. Futibatinib: First approval. Drugs, 2022, 82(18), 1737-1743. doi: 10.1007/s40265-022-01806-z PMID: 36441501
- Renhowe, P.A.; Pecchi, S.; Shafer, C.M.; Machajewski, T.D.; Jazan, E.M.; Taylor, C.; Antonios-McCrea, W.; McBride, C.M.; Frazier, K.; Wiesmann, M.; Lapointe, G.R.; Feucht, P.H.; Warne, R.L.; Heise, C.C.; Menezes, D.; Aardalen, K.; Ye, H.; He, M.; Le, V.; Vora, J.; Jansen, J.M.; Wernette-Hammond, M.E.; Harris, A.L. Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: A novel class of receptor tyrosine kinase inhibitors. J. Med. Chem., 2009, 52(2), 278-292. doi: 10.1021/jm800790t PMID: 19113866
- Gozgit, J.M.; Wong, M.J.; Moran, L.; Wardwell, S.; Mohemmad, Q.K.; Narasimhan, N.I.; Shakespeare, W.C.; Wang, F.; Clackson, T.; Rivera, V.M. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther., 2012, 11(3), 690-699. doi: 10.1158/1535-7163.MCT-11-0450 PMID: 22238366
- Colella, G. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann. Oncol., 2014, 25, 2244-2251.
- Roth, G.J.; Heckel, A.; Colbatzky, F.; Handschuh, S.; Kley, J.; Lehmann-Lintz, T.; Lotz, R.; Tontsch-Grunt, U.; Walter, R.; Hilberg, F. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J. Med. Chem., 2009, 52(14), 4466-4480. doi: 10.1021/jm900431g PMID: 19522465
- Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B.K.; Hubbard, S.R.; Schlessinger, J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science, 1997, 276(5314), 955-960. doi: 10.1126/science.276.5314.955 PMID: 9139660
- Mohammadi, M.; Froum, S.; Hamby, J.M.; Schroeder, M.C.; Panek, R.L.; Lu, G.H.; Eliseenkova, A.V.; Green, D.; Schlessinger, J.; Hubbard, S.R. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J., 1998, 17(20), 5896-5904. doi: 10.1093/emboj/17.20.5896 PMID: 9774334
- Hamby, J.M.; Connolly, C.J.C.; Schroeder, M.C.; Winters, R.T.; Showalter, H.D.H.; Panek, R.L.; Major, T.C.; Olsewski, B.; Ryan, M.J.; Dahring, T.; Lu, G.H.; Keiser, J.; Amar, A.; Shen, C.; Kraker, A.J.; Slintak, V.; Nelson, J.M.; Fry, D.W.; Bradford, L.; Hallak, H.; Doherty, A.M. Structure-activity relationships for a novel series of pyrido2,3-dpyrimidine tyrosine kinase inhibitors. J. Med. Chem., 1997, 40(15), 2296-2303. doi: 10.1021/jm970367n PMID: 9240345
- Na, Y.R.; Kim, J.Y.; Song, C.H.; Kim, M.; Do, Y.T.; Vo, T.T.L.; Choi, E.; Ha, E.; Seo, J.H.; Shin, S.J. The FGFR family inhibitor AZD4547 exerts an antitumor effect in ovarian cancer cells. Int. J. Mol. Sci., 2021, 22(19), 10817. doi: 10.3390/ijms221910817 PMID: 34639155
- Plimack, E.R.; LoRusso, P.M.; McCoon, P.; Tang, W.; Krebs, A.D.; Curt, G.; Eckhardt, S.G. AZD1480: A phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist, 2013, 18(7), 819-820. doi: 10.1634/theoncologist.2013-0198 PMID: 23847256
- Nogova, L.; Sequist, L.V.; Perez Garcia, J.M.; Andre, F.; Delord, J.P.; Hidalgo, M.; Schellens, J.H.M.; Cassier, P.A.; Camidge, D.R.; Schuler, M.; Vaishampayan, U.; Burris, H.A.; Tian, G.G.; Campone, M.; Wainberg, Z.A.; Lim, W.T.; LoRusso, P.; Shapiro, G.I.; Parker, K.; Chen, X.; Choudhury, S.; Ringeisen, F.; Graus-Porta, D.; Porter, D.; Isaacs, R.; Buettner, R.; Wolf, J. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: Results of a global phase I, dose-escalation and dose-expansion study. J. Clin. Oncol., 2017, 35(2), 157-165. doi: 10.1200/JCO.2016.67.2048 PMID: 27870574
- Carter, E.P.; Fearon, A.E.; Grose, R.P. Careless talk costs lives: Fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol., 2015, 25(4), 221-233. doi: 10.1016/j.tcb.2014.11.003 PMID: 25467007
- Cheng, W.; Wang, M.; Tian, X.; Zhang, X. An overview of the binding models of FGFR tyrosine kinases in complex with small molecule inhibitors. Eur. J. Med. Chem., 2017, 126, 476-490. doi: 10.1016/j.ejmech.2016.11.052 PMID: 27914362
- Traxler, P.; Furet, P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther., 1999, 82(2-3), 195-206. doi: 10.1016/S0163-7258(98)00044-8 PMID: 10454197
- Yosaatmadja, Y.; Patterson, A.V.; Smaill, J.B.; Squire, C.J. The 1.65 Å resolution structure of the complex of AZD4547 with the kinase domain of FGFR1 displays exquisite molecular recognition. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(3), 525-533. doi: 10.1107/S1399004714027539 PMID: 25760602
- Patani, H.; Bunney, T.D.; Thiyagarajan, N.; Norman, R.A.; Ogg, D.; Breed, J.; Ashford, P.; Potterton, A.; Edwards, M.; Williams, S.V.; Thomson, G.S.; Pang, C.S.M.; Knowles, M.A.; Breeze, A.L.; Orengo, C.; Phillips, C.; Katan, M. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use. Oncotarget, 2016, 7(17), 24252-24268. doi: 10.18632/oncotarget.8132 PMID: 26992226
- Ebiike, H.; Taka, N.; Matsushita, M.; Ohmori, M.; Takami, K.; Hyohdoh, I.; Kohchi, M.; Hayase, T.; Nishii, H.; Morikami, K.; Nakanishi, Y.; Akiyama, N.; Shindoh, H.; Ishii, N.; Isobe, T.; Matsuoka, H. Discovery of 5-amino-1-(2-methyl-3H-benzimidazol-5-yl)pyrazol-4-yl-(1H-indol-2-yl)methanone (CH5183284/Debio 1347), an orally available and selective fibroblast growth factor receptor (FGFR) inhibitor. J. Med. Chem., 2016, 59(23), 10586-10600. doi: 10.1021/acs.jmedchem.6b01156 PMID: 27933954
- Liang, G.; Chen, G.; Wei, X.; Zhao, Y.; Li, X. Small molecule inhibition of fibroblast growth factor receptors in cancer. Cytokine Growth Factor Rev., 2013, 24(5), 467-475. doi: 10.1016/j.cytogfr.2013.05.002 PMID: 23830577
- Roskoski, R., Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res., 2016, 103, 26-48. doi: 10.1016/j.phrs.2015.10.021 PMID: 26529477
- Tucker, J.A.; Klein, T.; Breed, J.; Breeze, A.L.; Overman, R.; Phillips, C.; Norman, R.A. Structural insights into FGFR kinase isoform selectivity: Diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure, 2014, 22(12), 1764-1774. doi: 10.1016/j.str.2014.09.019 PMID: 25465127
- Kufareva, I.; Abagyan, R. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J. Med. Chem., 2008, 51(24), 7921-7932. doi: 10.1021/jm8010299 PMID: 19053777
- Tsimafeyeu, I.; Daeyaert, F.; Yin, W.; Ludes-Meyers, J.; Byakhov, M.; Tjulandin, S. 476 FGFR2 targeting with allosteric inhibitor RPT835. Eur. J. Cancer, 2014, 50, 155. doi: 10.1016/S0959-8049(14)70602-1
- Hah, J.M.; Sharma, V.; Li, H.; Lawrence, D.S. Acquisition of a “Group A”-selective Src kinase inhibitor via a global targeting strategy. J. Am. Chem. Soc., 2006, 128(18), 5996-5997. doi: 10.1021/ja060136i PMID: 16669643
- Hill, Z.B.; Perera, B.G.K.; Maly, D.J. A chemical genetic method for generating bivalent inhibitors of protein kinases. J. Am. Chem. Soc., 2009, 131(19), 6686-6688. doi: 10.1021/ja900871y PMID: 19391594
- Lamba, V.; Ghosh, I. New directions in targeting protein kinases: Focusing upon true allosteric and bivalent inhibitors. Curr. Pharm. Des., 2012, 18(20), 2936-2945. doi: 10.2174/138161212800672813 PMID: 22571662
- Wei, M.; Peng, X.; Xing, L.; Dai, Y.; Huang, R.; Geng, M.; Zhang, A.; Ai, J.; Song, Z. Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-1-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur. J. Med. Chem., 2018, 154, 9-28. doi: 10.1016/j.ejmech.2018.05.005 PMID: 29775937
- Zhang, X.; Wang, Y.; Ji, J.; Si, D.; Bao, X.; Yu, Z.; Zhu, Y.; Zhao, L.; Li, W.; Liu, J. Discovery of 1,6-naphthyridin-2(1H)-one derivatives as novel, potent, and selective FGFR4 inhibitors for the treatment of hepatocellular carcinoma. J. Med. Chem., 2022, 65(11), 7595-7618. doi: 10.1021/acs.jmedchem.1c01977 PMID: 35635004
- Zhang, Z.; Li, J.; Chen, H.; Huang, J.; Song, X.; Tu, Z.C.; Zhang, Z.; Peng, L.; Zhou, Y.; Ding, K. Design, synthesis, and biological evaluation of 2 formyl tetrahydronaphthyridine urea derivatives as new selective covalently reversible FGFR4 inhibitors. J. Med. Chem., 2022, 65(4), 3249-3265. doi: 10.1021/acs.jmedchem.1c01816 PMID: 35119278
- Modh, D.H.; Modi, S.J.; Deokar, H.; Yadav, S.; Kulkarni, V.M. Fibroblast growth factor receptor (FGFR) inhibitors as anticancer agents: 3D-QSAR, molecular docking and dynamics simulation studies of 1, 6-naphthyridines and pyridopyrimidines. J. Biomol. Struct. Dyn., 2023, 41(8), 3591-3606. doi: 10.1080/07391102.2022.2053206 PMID: 35318898
- Ran, K.; Zeng, J.; Wan, G.; He, X.; Feng, Z.; Xiang, W.; Wei, W.; Hu, X.; Wang, N.; Liu, Z.; Yu, L. Design, synthesis and biological evaluations of a series of Pyrido1,2-apyrimidinone derivatives as novel selective FGFR inhibitors. Eur. J. Med. Chem., 2021, 220, 113499. doi: 10.1016/j.ejmech.2021.113499 PMID: 33940465
- Wei, Y.; Tang, Y.; Zhou, Y.; Yang, Y.; Cui, Y.; Wang, X.; Wang, Y.; Liu, Y.; Liu, N.; Wang, Q.; Li, C.; Ruan, H.; Zhou, H.; Wei, M.; Yang, G.; Yang, C. Discovery and optimization of a novel 2H-pyrazolo3,4-dpyrimidine derivative as a potent irreversible pan-fibroblast growth factor receptor inhibitor imp discovery of potent irreversible pan-fibroblast growth factor receptor (FGFR) inhibitors. J. Med. Chem., 2021, 64(13), 9078-9099. doi: 10.1021/acs.jmedchem.1c00174 PMID: 34129329
- Xie, W.; Yang, S.; Liang, L.; Wang, M.; Zuo, W.; Lei, Y.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y.; Jiang, Y. discovery of 2-amino-7-sulfonyl-7h-pyrrolo2,3-dpyrimidine derivatives as potent reversible FGFR inhibitors with gatekeeper mutation tolerance: Design, synthesis, and biological evaluation. J. Med. Chem., 2022, 65(24), 16570-16588. doi: 10.1021/acs.jmedchem.2c01420 PMID: 36480917
- Wu, L.; Zhang, C.; He, C.; Qian, D.; Lu, L.; Sun, Y.; Xu, M.; Zhuo, J.; Liu, P.C.C.; Klabe, R.; Wynn, R.; Covington, M.; Gallagher, K.; Leffet, L.; Bowman, K.; Diamond, S.; Koblish, H.; Zhang, Y.; Soloviev, M.; Hollis, G.; Burn, T.C.; Scherle, P.; Yeleswaram, S.; Huber, R.; Yao, W. Discovery of pemigatinib: A potent and selective fibroblast growth factor receptor (FGFR) inhibitor. J. Med. Chem., 2021, 64(15), 10666-10679. doi: 10.1021/acs.jmedchem.1c00713 PMID: 34269576
- Li, C.; Dai, Y.; Kong, X.; Wang, B.; Peng, X.; Wu, H.; Shen, Y.; Yang, Y.; Ji, Y.; Wang, D.; Li, S.; Li, X.; Shi, Y.; Geng, M.; Zheng, M.; Ai, J.; Liu, H. Structural optimization of fibroblast growth factor receptor inhibitors for treating solid tumors. J. Med. Chem., 2023, 66(5), 3226-3249. doi: 10.1021/acs.jmedchem.2c01507 PMID: 36802596
- Shvartsbart, A.; Roach, J.J.; Witten, M.R.; Koblish, H.; Harris, J.J.; Covington, M.; Hess, R.; Lin, L.; Frascella, M.; Truong, L.; Leffet, L.; Conlen, P.; Beshad, E.; Klabe, R.; Katiyar, K.; Kaldon, L.; Young-Sciame, R.; He, X.; Petusky, S.; Chen, K.J.; Horsey, A.; Lei, H.T.; Epling, L.B.; Deller, M.C.; Vechorkin, O.; Yao, W. Discovery of potent and selective inhibitors of wild-type and gatekeeper mutant fibroblast growth factor receptor (FGFR) 2/3. J. Med. Chem., 2022, 65(22), 15433-15442. doi: 10.1021/acs.jmedchem.2c01366 PMID: 36356320
- Wang, Y.; Dai, Y.; Wu, X.; Li, F.; Liu, B.; Li, C.; Liu, Q.; Zhou, Y.; Wang, B.; Zhu, M.; Cui, R.; Tan, X.; Xiong, Z.; Liu, J.; Tan, M.; Xu, Y.; Geng, M.; Jiang, H.; Liu, H.; Ai, J.; Zheng, M. Discovery and development of a series of pyrazolo3,4-dpyridazinone compounds as the novel covalent fibroblast growth factor receptor inhibitors by the rational drug design. J. Med. Chem., 2019, 62(16), 7473-7488. doi: 10.1021/acs.jmedchem.9b00510 PMID: 31335138
- Chen, X.; Liu, Y.; Zhang, L.; Chen, D.; Dong, Z.; Zhao, C.; Liu, Z.; Xia, Q.; Wu, J.; Chen, Y.; Zheng, X.; Cai, Y. Design, synthesis, and biological evaluation of indazole derivatives as selective and potent FGFR4 inhibitors for the treatment of FGF19-driven hepatocellular cancer. Eur. J. Med. Chem., 2021, 214, 113219. doi: 10.1016/j.ejmech.2021.113219 PMID: 33618175
- Shao, M.; Chen, X.; Yang, F.; Song, X.; Zhou, Y.; Lin, Q.; Fu, Y.; Ortega, R.; Lin, X.; Tu, Z.; Patterson, A.V.; Smaill, J.B.; Chen, Y.; Lu, X. Design, synthesis, and biological evaluation of aminoindazole derivatives as highly selective covalent inhibitors of wild-type and gatekeeper mutant FGFR4. J. Med. Chem., 2022, 65(6), 5113-5133. doi: 10.1021/acs.jmedchem.2c00096 PMID: 35271262
- Zhong, Z.; Shi, L.; Fu, T.; Huang, J.; Pan, Z. Discovery of novel 7-azaindole derivatives as selective covalent fibroblast growth factor receptor 4 inhibitors for the treatment of hepatocellular carcinoma. J. Med. Chem., 2022, 65(10), 7278-7295. doi: 10.1021/acs.jmedchem.2c00255 PMID: 35549181
- Eldehna, W.M.; El Kerdawy, A.M.; Al-Ansary, G.H.; Al-Rashood, S.T.; Ali, M.M.; Mahmoud, A.E. Type IIA - Type IIB protein tyrosine kinase inhibitors hybridization as an efficient approach for potent multikinase inhibitor development: Design, synthesis, anti-proliferative activity, multikinase inhibitory activity and molecular modeling of novel indolinone-based ureides and amides. Eur. J. Med. Chem., 2019, 163, 37-53. doi: 10.1016/j.ejmech.2018.11.061 PMID: 30503942
- Takamura, T.; Horinaka, M.; Yasuda, S.; Toriyama, S.; Aono, Y.; Sowa, Y.; Miki, T.; Ukimura, O.; Sakai, T. FGFR inhibitor BGJ398 and HDAC inhibitor OBP-801 synergistically inhibit cell growth and induce apoptosis in bladder cancer cells. Oncol. Rep., 2018, 39(2), 627-632. PMID: 29207153
- Wan, G.; Feng, Z.; Zhang, Q.; Li, X.; Ran, K.; Feng, H.; Luo, T.; Zhou, S.; Su, C.; Wei, W.; Wang, N.; Gao, C.; Zhao, L.; Yu, L. Design and synthesis of fibroblast growth factor receptor (FGFR) and histone deacetylase (HDAC) dual inhibitors for the treatment of cancer. J. Med. Chem., 2022, 65(24), 16541-16569. doi: 10.1021/acs.jmedchem.2c01413 PMID: 36449947
- Pan, C.; Nie, W.; Wang, J.; Du, J.; Pan, Z.; Gao, J.; Lu, Y.; Che, J.; Zhu, H.; Dai, H.; Chen, B.; He, Q.; Dong, X. Design, synthesis and biological evaluation of quinazoline derivatives as potent and selective FGFR4 inhibitors. Eur. J. Med. Chem., 2021, 225, 113794. doi: 10.1016/j.ejmech.2021.113794 PMID: 34488024
- Yang, F.; Chen, X.; Song, X.; Ortega, R.; Lin, X.; Deng, W.; Guo, J.; Tu, Z.; Patterson, A.V.; Smaill, J.B.; Chen, Y.; Lu, X. Design, synthesis, and biological evaluation of 5-formyl pyrrolo 3,2-bpyridine-3-carboxamides as new selective, potent, and reversible-covalent FGFR4 inhibitors. J. Med. Chem., 2022, 65(21), 14809-14831. doi: 10.1021/acs.jmedchem.2c01319 PMID: 36278929
- Yamani, A.; Zdżalik-Bielecka, D.; Lipner, J.; Stańczak, A.; Piórkowska, N.; Stańczak, P.S.; Olejkowska, P.; Hucz-Kalitowska, J.; Magdycz, M.; Dzwonek, K.; Dubiel, K.; Lamparska-Przybysz, M.; Popiel, D.; Pieczykolan, J.; Wieczorek, M. Discovery and optimization of novel pyrazole-benzimidazole CPL304110, as a potent and selective inhibitor of fibroblast growth factor receptors FGFR (1–3). Eur. J. Med. Chem., 2021, 210, 112990. doi: 10.1016/j.ejmech.2020.112990 PMID: 33199155
- Ying, S.; Du, X.; Fu, W.; Yun, D.; Chen, L.; Cai, Y.; Xu, Q.; Wu, J.; Li, W.; Liang, G. Synthesis, biological evaluation, QSAR and molecular dynamics simulation studies of potential fibroblast growth factor receptor 1 inhibitors for the treatment of gastric cancer. Eur. J. Med. Chem., 2017, 127, 885-899. doi: 10.1016/j.ejmech.2016.10.066 PMID: 27829519
- Ma, L.; Li, Y.; Luo, R.; Wang, Y.; Cao, J.; Fu, W.; Qian, B.; Zheng, L.; Tang, L.; Lv, X.; Zheng, L.; Liang, G.; Chen, L. Discovery of a selective and orally bioavailable FGFR2 degrader for treating gastric cancer. J. Med. Chem., 2023, 66(11), 7438-7453. doi: 10.1021/acs.jmedchem.3c00150 PMID: 37220310
补充文件
