Chrysin Exhibits Selective Antiproliferative and Antimigratory Activities in a Wide Range of Human-derived Cervical Cancer Cell Lines


Цитировать

Полный текст

Аннотация

Background: In the past few years, the antiproliferative activities of chrysin (5,7-dihydroxyflavone) have garnered significant attention in anticancer drug discovery due to its promising ability to suppress cancer cell proliferation. However, studies on its effects on cervical cancer are limited and have primarily focused on HeLa cells.

Objective: In order to better understand its therapeutic potential for cervical cancer, we assessed the antiproliferative and anti-migratory effects of chrysin in a wide range of human-derived cell lines comprising C33A (human papillomavirus/HPV-negative), HeLa (HPV 18-positive), SiHa (HPV 16-positive), and CaSKi (HPV 16 and 18- positive), in comparison to a human epithelial cell line derived from spontaneously immortalized cell, HaCaT.

Methods: Cell viability was determined using the MTT assay, while the clonogenic assay evaluated long-term cytotoxicity. Morphological alterations were observed via light microscopy, and cell death was assessed using Annexin V FITC/propidium iodide (PI) staining. Total reactive oxygen species (ROS) levels were measured by fluorescence microscopy, the mitochondrial transmembrane potential was assessed using TMRE, and lipid peroxidation was analyzed using DPPP. Additionally, wound healing migration and cell invasion assays were conducted.

Results: Chrysin selectively inhibited cell proliferation and induced apoptosis in every cervical cancer cell line assessed while exerting minimal effects on HaCaT cells. Additionally, it triggered mitochondrial redox imbalance and significantly suppressed both migration and invasion of cervical cancer cells.

Conclusion: Based on these results, chrysin appears to be a promising candidate as an anticancer agent for both HPV-associated and HPV-independent cervical cancers, emphasizing the necessity for further exploration in subsequent studies.

Об авторах

Analine de Assis Carvalho

Department of Clinical Analysis and Biomedicine, State University of Maringá

Email: info@benthamscience.net

Gabrielle Ferreira Damke

Department of Clinical Analysis and Biomedicine, State University of Maringa

Email: info@benthamscience.net

Lyvia de Freitas Meirelles

Department of Clinical Analysis and Biomedicine, State University of Maringa

Email: info@benthamscience.net

Raquel Pantarotto Souza

Department of Clinical Analysis and Biomedicine, State University of Maringa

Email: info@benthamscience.net

Bianca Ratti

Department of Clinical Analysis and Biomedicine, State University of Maringa

Email: info@benthamscience.net

Edilson Damke

Department of Clinical Analysis and Biomedicine, State University of Maringa

Email: info@benthamscience.net

Marcos Bruschi

Department of Pharmacy, State University of Maringá

Email: info@benthamscience.net

Marcia Consolaro

Department of Clinical Analysis and Biomedicine, State University of Maringa

Автор, ответственный за переписку.
Email: info@benthamscience.net

Vania da Silva

Department of Clinical Analysis and Biomedicine, State University of Maringa

Email: info@benthamscience.net

Список литературы

  1. Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical cancer elimination initiative. Lancet Glob. Health, 2023, 11(2), e197-e206. doi: 10.1016/S2214-109X(22)00501-0 PMID: 36528031
  2. Brianti, P.; De Flammineis, E.; Mercuri, S.R. Review of HPV-related diseases and cancers. New Microbiol., 2017, 40(2), 80-85. PMID: 28368072
  3. Lorusso, D.; Petrelli, F.; Coinu, A.; Raspagliesi, F.; Barni, S.; Raspagliesi, F. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol., 2014, 133(1), 117-123. doi: 10.1016/j.ygyno.2014.01.042 PMID: 24486604
  4. Barra, F.; Lorusso, D.; Maggiore, U.L.R.; Ditto, A.; Bogani, G.; Raspagliesi, F.; Ferrero, S. Investigational drugs for the treatment of cervical cancer. Expert Opin. Investig. Drugs, 2017, 26(4), 389-402. doi: 10.1080/13543784.2017.1302427 PMID: 28274154
  5. Vistad, I.; Fosså, S.D.; Dahl, A.A. A critical review of patient-rated quality of life studies of long-term survivors of cervical cancer. Gynecol. Oncol., 2006, 102(3), 563-572. doi: 10.1016/j.ygyno.2006.03.050 PMID: 16716379
  6. Mishra, N.; Singh, N.; Sachdeva, M.; Ghatage, P. Sexual dysfunction in cervical cancer survivors: A scoping review. Women's Health Reports, 2021, 2(1), 594-607. doi: 10.1089/whr.2021.0035 PMID: 35141708
  7. Fu, Z.Z.; Li, K.; Peng, Y.; Zheng, Y.; Cao, L.Y.; Zhang, Y.J.; Sun, Y.M. Efficacy and toxicity of different concurrent chemoradiotherapy regimens in the treatment of advanced cervical cancer. Medicine (Baltimore), 2017, 96(2), e5853. doi: 10.1097/MD.0000000000005853 PMID: 28079819
  8. Kinghorn, A.D.; De Blanco, E.J.C.; Lucas, D.M.; Rakotondraibe, H.L.; Orjala, J.; Soejarto, D.D.; Oberlies, N.H.; Pearce, C.J.; Wani, M.C.; Stockwell, B.R.; Burdette, J.; Swanson, S.M.; Fuchs, J.R.; Phelps, M.A.; Xu, L.; Zhang, X.; Shen, Y.Y. Discovery of anticancer agents of diverse natural origin. Anticancer Res., 2016, 36(11), 5623-5638. doi: 10.21873/anticanres.11146 PMID: 27793884
  9. de Freitas Meirelles, L.E.; de Assis Carvalho, A.R.B.; Ferreira Damke, G.M.Z.; Souza, R.P.; Damke, E.; de Souza Bonfim-Mendonça, P.; de Oliveira Dembogurski, D.S.; da Silva, D.B.; Consolaro, M.E.L.; da Silva, V.R.S. Antitumoral potential of Artepillin C, a compound derived from Brazilian propolis, against breast cancer cell lines. Anticancer. Agents Med. Chem., 2024, 24(2), 117-124. doi: 10.2174/0118715206270534231103074433 PMID: 37957873
  10. Souza, R.P.; Bonfim-Mendonça, P.S.; Gimenes, F.; Ratti, B.A.; Kaplum, V.; Bruschi, M.L.; Nakamura, C.V.; Silva, S.O.; Maria-Engler, S.S.; Consolaro, M.E.L. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid. Med. Cell. Longev., 2017, 2017(1), 1512745. doi: 10.1155/2017/1512745 PMID: 28191273
  11. Kasala, E.R.; Bodduluru, L.N.; Madana, R.M. v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225. doi: 10.1016/j.toxlet.2015.01.008 PMID: 25596314
  12. Farkhondeh, T.; Samarghandian, S.; Bafandeh, F. The cardiovascular protective effects of chrysin: A narrative review on experimental research. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 17-27. doi: 10.2174/1871525717666190114145137 PMID: 30648526
  13. Ryu, S.; Lim, W.; Bazer, F.W.; Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell. Physiol., 2017, 232(12), 3786-3797. doi: 10.1002/jcp.25861 PMID: 28213961
  14. Woo, K.J.; Jeong, Y.J.; Park, J.W.; Kwon, T.K. Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem. Biophys. Res. Commun., 2004, 325(4), 1215-1222. doi: 10.1016/j.bbrc.2004.09.225 PMID: 15555556
  15. Lim, W.; Ryu, S.; Bazer, F.W.; Kim, S.M.; Song, G. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. J. Cell. Physiol., 2018, 233(4), 3129-3140. doi: 10.1002/jcp.26150 PMID: 28816359
  16. Zhang, Q.; Zhao, X.H.; Wang, Z.J. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol. In vitro, 2009, 23(5), 797-807. doi: 10.1016/j.tiv.2009.04.007 PMID: 19397994
  17. Kasala, E.R.; Bodduluru, L.N.; Barua, C.C.; Gogoi, R. Chrysin and its emerging role in cancer drug resistance. Chem. Biol. Interact., 2015, 236, 7-8. doi: 10.1016/j.cbi.2015.04.017 PMID: 25912556
  18. Laishram, S.; Moirangthem, D.S.; Borah, J.C.; Pal, B.C.; Suman, P.; Gupta, S.K.; Kalita, M.C.; Talukdar, N.C. Chrysin rich Scutellaria discolor Colebr. induces cervical cancer cell death via the induction of cell cycle arrest and caspase-dependent apoptosis. Life Sci., 2015, 143, 105-113. doi: 10.1016/j.lfs.2015.10.035 PMID: 26541229
  19. Tang, Q.; Ji, F.; Guo, J.; Wang, J.; Li, Y.; Bao, Y. Directional modification of chrysin for exerting apoptosis and enhancing significantly anti-cancer effects of 10-hydroxy camptothecin. Biomed. Pharmacother., 2016, 82, 693-703. doi: 10.1016/j.biopha.2016.06.008 PMID: 27470413
  20. Zhang, T.; Chen, X.; Qu, L.; Wu, J.; Cui, R.; Zhao, Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem., 2004, 12(23), 6097-6105. doi: 10.1016/j.bmc.2004.09.013 PMID: 15519155
  21. Raina, R.; Afroze, N.; Sundaram, M.K.; Haque, S.; Bajbouj, K.; Hamad, M.; Hussain, A. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2206-2220. PMID: 33755959
  22. Leon, I.E.; Di Virgilio, A.L.; Porro, V.; Muglia, C.I.; Naso, L.G.; Williams, P.A.M.; Bollati-Fogolin, M.; Etcheverry, S.B. Antitumor properties of a vanadyl(iv) complex with the flavonoid chrysin VO(chrysin)2EtOH2 in a human osteosarcoma model: The role of oxidative stress and apoptosis. Dalton Trans., 2013, 42(33), 11868-11880. doi: 10.1039/c3dt50524c PMID: 23760674
  23. Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1245049.
  24. Twentyman, P.R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer, 1987, 56, 279-285.
  25. Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319. doi: 10.1038/nprot.2006.339 PMID: 17406473
  26. Iqbal, B.; Ghildiyal, A.; Sahabjada, S.; Singh, S.; Arshad, M.; Mahdi, A.A.; Tiwari, S. Antiproliferative and apoptotic effect of curcumin and TRAIL (TNF related apoptosis inducing ligand) in chronic myeloid leukaemic cells. J. Clin. Diagn. Res., 2016, 10(4), XC01-XC05. doi: 10.7860/JCDR/2016/18507.7579 PMID: 27190933
  27. Shukla, A.K.; Patra, S.; Dubey, V.K. Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite. Eur. J. Med. Chem., 2012, 54, 49-58. doi: 10.1016/j.ejmech.2012.04.034 PMID: 22608855
  28. Xu, J.; Hao, Z.; Gou, X.; Tian, W.; Jin, Y.; Cui, S.; Guo, J.; Sun, Y.; Wang, Y.; Xu, Z. Imaging of reactive oxygen species burst from mitochondria using laser scanning confocal microscopy. Microsc. Res. Tech., 2013, 76(6), 612-617. doi: 10.1002/jemt.22207 PMID: 23580478
  29. Okimoto, Y.; Watanabe, A.; Niki, E.; Yamashita, T.; Noguchi, N. A novel fluorescent probe diphenyl‐1‐pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett., 2000, 474(2-3), 137-140. doi: 10.1016/S0014-5793(00)01587-8 PMID: 10838073
  30. Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc., 2007, 2(2), 329-333. doi: 10.1038/nprot.2007.30 PMID: 17406593
  31. Tomin, K.; Goldfarb, R.H.; Albertsson, P. In vitro assessment of human natural killer cell migration and invasion. Methods Mol. Biol., 2016, 1441, 65-74. doi: 10.1007/978-1-4939-3684-7_6 PMID: 27177657
  32. Patel, R.V.; Mistry, B.; Syed, R.; Rathi, A.K.; Lee, Y.J.; Sung, J.S.; Shinf, H.S.; Keum, Y.S. Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur. J. Pharm. Sci., 2016, 88, 166-177. doi: 10.1016/j.ejps.2016.02.011 PMID: 26924226
  33. Mistry, B.M.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Chrysin–benzothiazole conjugates as antioxidant and anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(23), 5561-5565. doi: 10.1016/j.bmcl.2015.10.052 PMID: 26514745
  34. Zhang, Q.; Ma, S.; Liu, B.; Liu, J.; Zhu, R.; Li, M. Chrysin induces cell apoptosis via activation of the p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells. Exp. Ther. Med., 2016, 12(1), 469-474. doi: 10.3892/etm.2016.3282 PMID: 27347080
  35. Sies, H. Strategies of antioxidant defense. Eur. J. Biochem., 1993, 215(2), 213-219. doi: 10.1111/j.1432-1033.1993.tb18025.x PMID: 7688300
  36. Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev., 2010, 3(1), 23-34. doi: 10.4161/oxim.3.1.10095 PMID: 20716925
  37. Salimi, A.; Roudkenar, M.H.; Seydi, E.; Sadeghi, L.; Mohseni, A.; Pirahmadi, N.; Pourahmad, J. Chrysin as an anti-cancer agent exerts selective toxicity by directly inhibiting mitochondrial complex II and V in CLL B-lymphocytes. Cancer Invest., 2017, 35(3), 174-186. doi: 10.1080/07357907.2016.1276187 PMID: 28301251
  38. Park, W.; Park, S.; Lim, W.; Song, G. Chrysin disrupts intracellular homeostasis through mitochondria-mediated cell death in human choriocarcinoma cells. Biochem. Biophys. Res. Commun., 2018, 503(4), 3155-3161. doi: 10.1016/j.bbrc.2018.08.109 PMID: 30139515
  39. Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84. doi: 10.1038/s41580-018-0080-4 PMID: 30459476
  40. Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol., 2014, 16(6), 488-494. doi: 10.1038/ncb2976 PMID: 24875735
  41. Prangsaengtong, O.; Athikomkulchai, S.; Xu, J.; Koizumi, K.; Inujima, A.; Shibahara, N.; Shimada, Y.; Tadtong, S.; Awale, S. Chrysin inhibits lymphangiogenesis in vitro. Biol. Pharm. Bull., 2016, 39(4), 466-472. doi: 10.1248/bpb.b15-00543 PMID: 27040620
  42. Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Luo, X.; Huang, J.; Luo, F.; Li, H.; Li, H.; Ren, G. Chrysin inhibits metastatic potential of human triple‐negative breast cancer cells by modulating matrix metalloproteinase‐10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol., 2014, 34(1), 105-112. doi: 10.1002/jat.2941 PMID: 24122885
  43. Yufei, Z.; Yuqi, W.; Binyue, H.; Lingchen, T.; Xi, C.; Hoffelt, D.; Fuliang, H. Chrysin inhibits melanoma tumor metastasis via interfering with the FOXM1/β-Catenin signaling. J. Agric. Food Chem., 2020, 68(35), 9358-9367. doi: 10.1021/acs.jafc.0c03123 PMID: 32797754
  44. Raina, R.; Almutary, A.G.; Bagabir, S.A.; Afroze, N.; Fagoonee, S.; Haque, S.; Hussain, A. Chrysin modulates aberrant epigenetic variations and hampers migratory behavior of human cervical (HeLa) cells. Front. Genet., 2022, 12, 768130. doi: 10.3389/fgene.2021.768130 PMID: 35096000
  45. Dong, W.; Chen, A.; Chao, X.; Li, X.; Cui, Y.; Xu, C.; Cao, J.; Ning, Y. Chrysin inhibits proinflammatory factor-induced EMT phenotype and cancer stem cell-like features in HeLa Cells by blocking the NF-κB/Twist axis. Cell. Physiol. Biochem., 2019, 52(5), 1236-1250. doi: 10.33594/000000084 PMID: 31001962

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025