Chrysin Exhibits Selective Antiproliferative and Antimigratory Activities in a Wide Range of Human-derived Cervical Cancer Cell Lines
- Авторлар: de Assis Carvalho A.R.1, Ferreira Damke G.2, de Freitas Meirelles L.2, Pantarotto Souza R.2, Ratti B.2, Damke E.2, Bruschi M.3, Consolaro M.2, da Silva V.2
-
Мекемелер:
- Department of Clinical Analysis and Biomedicine, State University of Maringá
- Department of Clinical Analysis and Biomedicine, State University of Maringa
- Department of Pharmacy, State University of Maringá
- Шығарылым: Том 25, № 17 (2025)
- Беттер: 1311-1322
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694454
- DOI: https://doi.org/10.2174/0118715206366318250312052617
- ID: 694454
Дәйексөз келтіру
Толық мәтін
Аннотация
Background: In the past few years, the antiproliferative activities of chrysin (5,7-dihydroxyflavone) have garnered significant attention in anticancer drug discovery due to its promising ability to suppress cancer cell proliferation. However, studies on its effects on cervical cancer are limited and have primarily focused on HeLa cells.
Objective: In order to better understand its therapeutic potential for cervical cancer, we assessed the antiproliferative and anti-migratory effects of chrysin in a wide range of human-derived cell lines comprising C33A (human papillomavirus/HPV-negative), HeLa (HPV 18-positive), SiHa (HPV 16-positive), and CaSKi (HPV 16 and 18- positive), in comparison to a human epithelial cell line derived from spontaneously immortalized cell, HaCaT.
Methods: Cell viability was determined using the MTT assay, while the clonogenic assay evaluated long-term cytotoxicity. Morphological alterations were observed via light microscopy, and cell death was assessed using Annexin V FITC/propidium iodide (PI) staining. Total reactive oxygen species (ROS) levels were measured by fluorescence microscopy, the mitochondrial transmembrane potential was assessed using TMRE, and lipid peroxidation was analyzed using DPPP. Additionally, wound healing migration and cell invasion assays were conducted.
Results: Chrysin selectively inhibited cell proliferation and induced apoptosis in every cervical cancer cell line assessed while exerting minimal effects on HaCaT cells. Additionally, it triggered mitochondrial redox imbalance and significantly suppressed both migration and invasion of cervical cancer cells.
Conclusion: Based on these results, chrysin appears to be a promising candidate as an anticancer agent for both HPV-associated and HPV-independent cervical cancers, emphasizing the necessity for further exploration in subsequent studies.
Негізгі сөздер
Авторлар туралы
Analine de Assis Carvalho
Department of Clinical Analysis and Biomedicine, State University of Maringá
Email: info@benthamscience.net
Gabrielle Ferreira Damke
Department of Clinical Analysis and Biomedicine, State University of Maringa
Email: info@benthamscience.net
Lyvia de Freitas Meirelles
Department of Clinical Analysis and Biomedicine, State University of Maringa
Email: info@benthamscience.net
Raquel Pantarotto Souza
Department of Clinical Analysis and Biomedicine, State University of Maringa
Email: info@benthamscience.net
Bianca Ratti
Department of Clinical Analysis and Biomedicine, State University of Maringa
Email: info@benthamscience.net
Edilson Damke
Department of Clinical Analysis and Biomedicine, State University of Maringa
Email: info@benthamscience.net
Marcos Bruschi
Department of Pharmacy, State University of Maringá
Email: info@benthamscience.net
Marcia Consolaro
Department of Clinical Analysis and Biomedicine, State University of Maringa
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Vania da Silva
Department of Clinical Analysis and Biomedicine, State University of Maringa
Email: info@benthamscience.net
Әдебиет тізімі
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical cancer elimination initiative. Lancet Glob. Health, 2023, 11(2), e197-e206. doi: 10.1016/S2214-109X(22)00501-0 PMID: 36528031
- Brianti, P.; De Flammineis, E.; Mercuri, S.R. Review of HPV-related diseases and cancers. New Microbiol., 2017, 40(2), 80-85. PMID: 28368072
- Lorusso, D.; Petrelli, F.; Coinu, A.; Raspagliesi, F.; Barni, S.; Raspagliesi, F. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol., 2014, 133(1), 117-123. doi: 10.1016/j.ygyno.2014.01.042 PMID: 24486604
- Barra, F.; Lorusso, D.; Maggiore, U.L.R.; Ditto, A.; Bogani, G.; Raspagliesi, F.; Ferrero, S. Investigational drugs for the treatment of cervical cancer. Expert Opin. Investig. Drugs, 2017, 26(4), 389-402. doi: 10.1080/13543784.2017.1302427 PMID: 28274154
- Vistad, I.; Fosså, S.D.; Dahl, A.A. A critical review of patient-rated quality of life studies of long-term survivors of cervical cancer. Gynecol. Oncol., 2006, 102(3), 563-572. doi: 10.1016/j.ygyno.2006.03.050 PMID: 16716379
- Mishra, N.; Singh, N.; Sachdeva, M.; Ghatage, P. Sexual dysfunction in cervical cancer survivors: A scoping review. Women's Health Reports, 2021, 2(1), 594-607. doi: 10.1089/whr.2021.0035 PMID: 35141708
- Fu, Z.Z.; Li, K.; Peng, Y.; Zheng, Y.; Cao, L.Y.; Zhang, Y.J.; Sun, Y.M. Efficacy and toxicity of different concurrent chemoradiotherapy regimens in the treatment of advanced cervical cancer. Medicine (Baltimore), 2017, 96(2), e5853. doi: 10.1097/MD.0000000000005853 PMID: 28079819
- Kinghorn, A.D.; De Blanco, E.J.C.; Lucas, D.M.; Rakotondraibe, H.L.; Orjala, J.; Soejarto, D.D.; Oberlies, N.H.; Pearce, C.J.; Wani, M.C.; Stockwell, B.R.; Burdette, J.; Swanson, S.M.; Fuchs, J.R.; Phelps, M.A.; Xu, L.; Zhang, X.; Shen, Y.Y. Discovery of anticancer agents of diverse natural origin. Anticancer Res., 2016, 36(11), 5623-5638. doi: 10.21873/anticanres.11146 PMID: 27793884
- de Freitas Meirelles, L.E.; de Assis Carvalho, A.R.B.; Ferreira Damke, G.M.Z.; Souza, R.P.; Damke, E.; de Souza Bonfim-Mendonça, P.; de Oliveira Dembogurski, D.S.; da Silva, D.B.; Consolaro, M.E.L.; da Silva, V.R.S. Antitumoral potential of Artepillin C, a compound derived from Brazilian propolis, against breast cancer cell lines. Anticancer. Agents Med. Chem., 2024, 24(2), 117-124. doi: 10.2174/0118715206270534231103074433 PMID: 37957873
- Souza, R.P.; Bonfim-Mendonça, P.S.; Gimenes, F.; Ratti, B.A.; Kaplum, V.; Bruschi, M.L.; Nakamura, C.V.; Silva, S.O.; Maria-Engler, S.S.; Consolaro, M.E.L. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid. Med. Cell. Longev., 2017, 2017(1), 1512745. doi: 10.1155/2017/1512745 PMID: 28191273
- Kasala, E.R.; Bodduluru, L.N.; Madana, R.M. v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225. doi: 10.1016/j.toxlet.2015.01.008 PMID: 25596314
- Farkhondeh, T.; Samarghandian, S.; Bafandeh, F. The cardiovascular protective effects of chrysin: A narrative review on experimental research. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 17-27. doi: 10.2174/1871525717666190114145137 PMID: 30648526
- Ryu, S.; Lim, W.; Bazer, F.W.; Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell. Physiol., 2017, 232(12), 3786-3797. doi: 10.1002/jcp.25861 PMID: 28213961
- Woo, K.J.; Jeong, Y.J.; Park, J.W.; Kwon, T.K. Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem. Biophys. Res. Commun., 2004, 325(4), 1215-1222. doi: 10.1016/j.bbrc.2004.09.225 PMID: 15555556
- Lim, W.; Ryu, S.; Bazer, F.W.; Kim, S.M.; Song, G. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. J. Cell. Physiol., 2018, 233(4), 3129-3140. doi: 10.1002/jcp.26150 PMID: 28816359
- Zhang, Q.; Zhao, X.H.; Wang, Z.J. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol. In vitro, 2009, 23(5), 797-807. doi: 10.1016/j.tiv.2009.04.007 PMID: 19397994
- Kasala, E.R.; Bodduluru, L.N.; Barua, C.C.; Gogoi, R. Chrysin and its emerging role in cancer drug resistance. Chem. Biol. Interact., 2015, 236, 7-8. doi: 10.1016/j.cbi.2015.04.017 PMID: 25912556
- Laishram, S.; Moirangthem, D.S.; Borah, J.C.; Pal, B.C.; Suman, P.; Gupta, S.K.; Kalita, M.C.; Talukdar, N.C. Chrysin rich Scutellaria discolor Colebr. induces cervical cancer cell death via the induction of cell cycle arrest and caspase-dependent apoptosis. Life Sci., 2015, 143, 105-113. doi: 10.1016/j.lfs.2015.10.035 PMID: 26541229
- Tang, Q.; Ji, F.; Guo, J.; Wang, J.; Li, Y.; Bao, Y. Directional modification of chrysin for exerting apoptosis and enhancing significantly anti-cancer effects of 10-hydroxy camptothecin. Biomed. Pharmacother., 2016, 82, 693-703. doi: 10.1016/j.biopha.2016.06.008 PMID: 27470413
- Zhang, T.; Chen, X.; Qu, L.; Wu, J.; Cui, R.; Zhao, Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem., 2004, 12(23), 6097-6105. doi: 10.1016/j.bmc.2004.09.013 PMID: 15519155
- Raina, R.; Afroze, N.; Sundaram, M.K.; Haque, S.; Bajbouj, K.; Hamad, M.; Hussain, A. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2206-2220. PMID: 33755959
- Leon, I.E.; Di Virgilio, A.L.; Porro, V.; Muglia, C.I.; Naso, L.G.; Williams, P.A.M.; Bollati-Fogolin, M.; Etcheverry, S.B. Antitumor properties of a vanadyl(iv) complex with the flavonoid chrysin VO(chrysin)2EtOH2 in a human osteosarcoma model: The role of oxidative stress and apoptosis. Dalton Trans., 2013, 42(33), 11868-11880. doi: 10.1039/c3dt50524c PMID: 23760674
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1245049.
- Twentyman, P.R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer, 1987, 56, 279-285.
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319. doi: 10.1038/nprot.2006.339 PMID: 17406473
- Iqbal, B.; Ghildiyal, A.; Sahabjada, S.; Singh, S.; Arshad, M.; Mahdi, A.A.; Tiwari, S. Antiproliferative and apoptotic effect of curcumin and TRAIL (TNF related apoptosis inducing ligand) in chronic myeloid leukaemic cells. J. Clin. Diagn. Res., 2016, 10(4), XC01-XC05. doi: 10.7860/JCDR/2016/18507.7579 PMID: 27190933
- Shukla, A.K.; Patra, S.; Dubey, V.K. Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite. Eur. J. Med. Chem., 2012, 54, 49-58. doi: 10.1016/j.ejmech.2012.04.034 PMID: 22608855
- Xu, J.; Hao, Z.; Gou, X.; Tian, W.; Jin, Y.; Cui, S.; Guo, J.; Sun, Y.; Wang, Y.; Xu, Z. Imaging of reactive oxygen species burst from mitochondria using laser scanning confocal microscopy. Microsc. Res. Tech., 2013, 76(6), 612-617. doi: 10.1002/jemt.22207 PMID: 23580478
- Okimoto, Y.; Watanabe, A.; Niki, E.; Yamashita, T.; Noguchi, N. A novel fluorescent probe diphenyl‐1‐pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett., 2000, 474(2-3), 137-140. doi: 10.1016/S0014-5793(00)01587-8 PMID: 10838073
- Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc., 2007, 2(2), 329-333. doi: 10.1038/nprot.2007.30 PMID: 17406593
- Tomin, K.; Goldfarb, R.H.; Albertsson, P. In vitro assessment of human natural killer cell migration and invasion. Methods Mol. Biol., 2016, 1441, 65-74. doi: 10.1007/978-1-4939-3684-7_6 PMID: 27177657
- Patel, R.V.; Mistry, B.; Syed, R.; Rathi, A.K.; Lee, Y.J.; Sung, J.S.; Shinf, H.S.; Keum, Y.S. Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur. J. Pharm. Sci., 2016, 88, 166-177. doi: 10.1016/j.ejps.2016.02.011 PMID: 26924226
- Mistry, B.M.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Chrysin–benzothiazole conjugates as antioxidant and anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(23), 5561-5565. doi: 10.1016/j.bmcl.2015.10.052 PMID: 26514745
- Zhang, Q.; Ma, S.; Liu, B.; Liu, J.; Zhu, R.; Li, M. Chrysin induces cell apoptosis via activation of the p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells. Exp. Ther. Med., 2016, 12(1), 469-474. doi: 10.3892/etm.2016.3282 PMID: 27347080
- Sies, H. Strategies of antioxidant defense. Eur. J. Biochem., 1993, 215(2), 213-219. doi: 10.1111/j.1432-1033.1993.tb18025.x PMID: 7688300
- Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev., 2010, 3(1), 23-34. doi: 10.4161/oxim.3.1.10095 PMID: 20716925
- Salimi, A.; Roudkenar, M.H.; Seydi, E.; Sadeghi, L.; Mohseni, A.; Pirahmadi, N.; Pourahmad, J. Chrysin as an anti-cancer agent exerts selective toxicity by directly inhibiting mitochondrial complex II and V in CLL B-lymphocytes. Cancer Invest., 2017, 35(3), 174-186. doi: 10.1080/07357907.2016.1276187 PMID: 28301251
- Park, W.; Park, S.; Lim, W.; Song, G. Chrysin disrupts intracellular homeostasis through mitochondria-mediated cell death in human choriocarcinoma cells. Biochem. Biophys. Res. Commun., 2018, 503(4), 3155-3161. doi: 10.1016/j.bbrc.2018.08.109 PMID: 30139515
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84. doi: 10.1038/s41580-018-0080-4 PMID: 30459476
- Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol., 2014, 16(6), 488-494. doi: 10.1038/ncb2976 PMID: 24875735
- Prangsaengtong, O.; Athikomkulchai, S.; Xu, J.; Koizumi, K.; Inujima, A.; Shibahara, N.; Shimada, Y.; Tadtong, S.; Awale, S. Chrysin inhibits lymphangiogenesis in vitro. Biol. Pharm. Bull., 2016, 39(4), 466-472. doi: 10.1248/bpb.b15-00543 PMID: 27040620
- Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Luo, X.; Huang, J.; Luo, F.; Li, H.; Li, H.; Ren, G. Chrysin inhibits metastatic potential of human triple‐negative breast cancer cells by modulating matrix metalloproteinase‐10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol., 2014, 34(1), 105-112. doi: 10.1002/jat.2941 PMID: 24122885
- Yufei, Z.; Yuqi, W.; Binyue, H.; Lingchen, T.; Xi, C.; Hoffelt, D.; Fuliang, H. Chrysin inhibits melanoma tumor metastasis via interfering with the FOXM1/β-Catenin signaling. J. Agric. Food Chem., 2020, 68(35), 9358-9367. doi: 10.1021/acs.jafc.0c03123 PMID: 32797754
- Raina, R.; Almutary, A.G.; Bagabir, S.A.; Afroze, N.; Fagoonee, S.; Haque, S.; Hussain, A. Chrysin modulates aberrant epigenetic variations and hampers migratory behavior of human cervical (HeLa) cells. Front. Genet., 2022, 12, 768130. doi: 10.3389/fgene.2021.768130 PMID: 35096000
- Dong, W.; Chen, A.; Chao, X.; Li, X.; Cui, Y.; Xu, C.; Cao, J.; Ning, Y. Chrysin inhibits proinflammatory factor-induced EMT phenotype and cancer stem cell-like features in HeLa Cells by blocking the NF-κB/Twist axis. Cell. Physiol. Biochem., 2019, 52(5), 1236-1250. doi: 10.33594/000000084 PMID: 31001962
Қосымша файлдар
