Curcumin and its Analogues in Oral Squamous Cell Carcinoma: State-of-the-art and Therapeutic Potential


Citar

Texto integral

Resumo

Oral Squamous Cell Carcinoma (OSCC) is the most common cancer arising from squamous epithelium in the oral cavity and is characterized by high aggressiveness and metastatic potential, which together with a late diagnosis results in a 5-year survival rate of only 50% of patients. The therapeutic options for OSCC management are limited and largely influenced by the cancer stage. While radical surgery can be curative in early stage of disease, most cases require adjuvant therapies, including chemotherapy and radiotherapy which, however, often achieve poor curative rates and are associated with important negative effects. Therefore, there is an urgent need to discover new alternative treatment strategies to improve patients’ outcomes. Several medicinal herbs are being studied for their preventive or therapeutic effect in several diseases, including cancer. In particular, the Indian spice curcumin, largely used in oriental countries, has been studied as a chemopreventive or adjuvant agent for different malignancies. Indeed, curcumin is characterized by important biological properties, including antioxidant, anti-inflammatory, and anticancer effects, which could also be exploited in OSCC. However, due to its limited bioavailability and poor aqueous solubility, this review is focused on studies designing new synthetic analogues and developing novel types of curcumin delivery systems to improve its pharmacokinetic and biological properties. Thus, this review analyses the potential therapeutic role of curcumin in OSCC by providing an overview of current in vitro and in vivo studies demonstrating the beneficial effects of curcumin and its analogues in OSCC.

Sobre autores

Valentina Schiavoni

Department of Clinical Sciences, Polytechnic University of Marche

Email: info@benthamscience.net

Monica Emanuelli

Department of Clinical Sciences, Polytechnic University of Marche

Email: info@benthamscience.net

Davide Sartini

Department of Clinical Sciences, Polytechnic University of Marche

Email: info@benthamscience.net

Eleonora Salvolini

Department of Clinical Sciences, Polytechnic University of Marche

Autor responsável pela correspondência
Email: info@benthamscience.net

Valentina Pozzi

Department of Clinical Sciences, Polytechnic University of Marche

Email: info@benthamscience.net

Roberto Campagna

Department of Clinical Sciences, Polytechnic University of Marche

Email: info@benthamscience.net

Bibliografia

  1. Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11884-11894. PMID: 26617944
  2. Pickering, C.R.; Zhang, J.; Yoo, S.Y.; Bengtsson, L.; Moorthy, S.; Neskey, D.M.; Zhao, M.; Ortega Alves, M.V.; Chang, K.; Drummond, J.; Cortez, E.; Xie, T.; Zhang, D.; Chung, W.; Issa, J.P.J.; Zweidler-McKay, P.A.; Wu, X.; El-Naggar, A.K.; Weinstein, J.N.; Wang, J.; Muzny, D.M.; Gibbs, R.A.; Wheeler, D.A.; Myers, J.N.; Frederick, M.J. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov., 2013, 3(7), 770-781. doi: 10.1158/2159-8290.CD-12-0537 PMID: 23619168
  3. Fatima, J.; Fatima, E.; Mehmood, F.; Ishtiaq, I.; Khan, M.A.; Khurshid, H.M.S.; Kashif, M. Comprehensive analysis of oral squamous cell carcinomas: Clinical, epidemiological, and histopathological insights with a focus on prognostic factors and survival time. Cureus, 2024, 16(2), e54394. doi: 10.7759/cureus.54394 PMID: 38505442
  4. Mauceri, R.; Bazzano, M.; Coppini, M.; Tozzo, P.; Panzarella, V.; Campisi, G. Diagnostic delay of oral squamous cell carcinoma and the fear of diagnosis: A scoping review. Front. Psychol., 2022, 13, 1009080. doi: 10.3389/fpsyg.2022.1009080
  5. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
  6. Wang, J.; Xie, T.; Wang, B.; William, W.N., Jr; Heymach, J.V.; El-Naggar, A.K.; Myers, J.N.; Caulin, C. PD-1 blockade prevents the development and progression of carcinogen-induced oral premalignant lesions. Cancer Prev. Res., 2017, 10(12), 684-693. doi: 10.1158/1940-6207.CAPR-17-0108 PMID: 29018057
  7. Vigneswaran, N.; Williams, M.D. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. North Am., 2014, 26(2), 123-141. doi: 10.1016/j.coms.2014.01.001 PMID: 24794262
  8. Yang, J.; Guo, K.; Zhang, A.; Zhu, Y.; Li, W.; Yu, J.; Wang, P. Survival analysis of age-related oral squamous cell carcinoma: A population study based on SEER. Eur. J. Med. Res., 2023, 28(1), 413. doi: 10.1186/s40001-023-01345-7 PMID: 37814268
  9. Kruse, A.L.; Bredell, M.; Grätz, K.W. Oral cancer in men and women: Are there differences? Oral Maxillofac. Surg., 2011, 15(1), 51-55. doi: 10.1007/s10006-010-0253-6 PMID: 21052752
  10. Güneri, P.; Epstein, J.B. Late stage diagnosis of oral cancer: Components and possible solutions. Oral Oncol., 2014, 50(12), 1131-1136. doi: 10.1016/j.oraloncology.2014.09.005 PMID: 25255960
  11. Kowalski, L.P.; Carvalho, A.L. Natural history of untreated head and neck cancer. Eur. J. Cancer, 2000, 36(8), 1032-1037. doi: 10.1016/S0959-8049(00)00054-X PMID: 10885608
  12. Campagna, R.; Pozzi, V.; Salvucci, A.; Togni, L.; Mascitti, M.; Sartini, D.; Salvolini, E.; Santarelli, A.; Lo Muzio, L.; Emanuelli, M. Paraoxonase-2 expression in oral squamous cell carcinoma. Hum. Cell, 2023, 36(3), 1211-1213. doi: 10.1007/s13577-023-00875-w PMID: 36774414
  13. Sarode, G.; Maniyar, N.; Sarode, S.C.; Jafer, M.; Patil, S.; Awan, K.H. Epidemiologic aspects of oral cancer. Dis. Mon., 2020, 66(12), 100988. doi: 10.1016/j.disamonth.2020.100988 PMID: 32605720
  14. Chamoli, A.; Gosavi, A.S.; Shirwadkar, U.P.; Wangdale, K.V.; Behera, S.K.; Kurrey, N.K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral. Oncol., 2021, 121, 105451. doi: 10.1016/j.oraloncology.2021.105451
  15. Campagna, R.; Belloni, A.; Pozzi, V.; Salvucci, A.; Notarstefano, V.; Togni, L.; Mascitti, M.; Sartini, D.; Giorgini, E.; Salvolini, E.; Santarelli, A.; Lo Muzio, L.; Emanuelli, M. Role played by paraoxonase-2 enzyme in cell viability, proliferation and sensitivity to chemotherapy of oral squamous cell carcinoma cell lines. Int. J. Mol. Sci., 2022, 24(1), 338. doi: 10.3390/ijms24010338 PMID: 36613780
  16. Wittekindt, C.; Wagner, S.; Sharma, S.J.; Wurdemann, N.; Knuth, J.; Reder, H.; Klussmann, J.P. HPV : A different view on head and neck cancer. Laryngorhinootologie, 2018, 97(S01), S48-S113. doi: 10.1055/s-0043-121596
  17. Javadi, P.; Sharma, A.; Zahnd, W.E.; Jenkins, W.D. Evolving disparities in the epidemiology of oral cavity and oropharyngeal cancers. Can. Caus. Cont., 2017, 28(6), 635-645. doi: 10.1007/s10552-017-0889-8 PMID: 28391376
  18. Mehrotra, R.; Gupta, D.K. Exciting new advances in oral cancer diagnosis: Avenues to early detection. Head. Neck. Oncol., 2011, 3, 33. doi: 10.1186/1758-3284-3-33
  19. Sartini, D.; Campagna, R.; Lucarini, G.; Pompei, V.; Salvolini, E.; Mattioli-Belmonte, M.; Molinelli, E.; Brisigotti, V.; Campanati, A.; Bacchetti, T.; Ferretti, G.; Offidani, A.; Emanuelli, M. Differential immunohistochemical expression of paraoxonase-2 in actinic keratosis and squamous cell carcinoma. Hum. Cell, 2021, 34(6), 1929-1931. doi: 10.1007/s13577-021-00581-5 PMID: 34302630
  20. Belcher, R.; Hayes, K.; Fedewa, S.; Chen, A.Y. Current treatment of head and neck squamous cell cancer. J. Surg. Oncol., 2014, 110(5), 551-574. doi: 10.1002/jso.23724 PMID: 25053506
  21. Pandey, M.; Kannepali, K.K.; Dixit, R.; Kumar, M. Effect of neoadjuvant chemotherapy and its correlation with HPV status, EGFR, Her-2-neu, and GADD45 expression in oral squamous cell carcinoma. World J. Surg. Oncol., 2018, 16(1), 20. doi: 10.1186/s12957-018-1308-7 PMID: 29386013
  22. Tossetta, G.; Fantone, S.; Goteri, G.; Giannubilo, S.R.; Ciavattini, A.; Marzioni, D. The Role of NQO1 in ovarian cancer. Int. J. Mol. Sci., 2023, 24(9), 7839. doi: 10.3390/ijms24097839 PMID: 37175546
  23. Campagna, R.; Pozzi, V.; Giorgini, S.; Morichetti, D.; Goteri, G.; Sartini, D.; Serritelli, E.N.; Emanuelli, M. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance. Hum. Cell, 2023, 36(3), 1108-1119. doi: 10.1007/s13577-023-00892-9 PMID: 36897549
  24. Tossetta, G. Metformin improves ovarian cancer sensitivity to paclitaxel and platinum-based drugs: A review of in vitro findings. Int. J. Mol. Sci., 2022, 23(21), 12893. doi: 10.3390/ijms232112893 PMID: 36361682
  25. Tossetta, G.; Marzioni, D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur. J. Pharmacol., 2023, 941, 175503. doi: 10.1016/j.ejphar.2023.175503
  26. Schomberg, J. Identification of targetable pathways in oral cancer patients via random forest and chemical informatics. Cancer Inform., 2019, 28, 1176935119889911. doi: 10.1177/1176935119889911
  27. Huang, S.H.; O Sullivan, B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal, 2013, 18(2), e233-e240. doi: 10.4317/medoral.18772 PMID: 23385513
  28. Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer., 2011, 10, 12. doi: 10.1186/1476-4598-10-12
  29. Alsharairi, N.A. Quercetin derivatives as potential therapeutic agents: An updated perspective on the treatment of nicotine-induced non-small cell lung cancer. Int. J. Mol. Sci., 2023, 24(20), 15208. doi: 10.3390/ijms242015208 PMID: 37894889
  30. Tossetta, G.; Fantone, S.; Gesuita, R.; Goteri, G.; Senzacqua, M.; Marcheggiani, F.; Tiano, L.; Marzioni, D.; Mazzucchelli, R. Ciliary neurotrophic factor modulates multiple downstream signaling pathways in prostate cancer inhibiting cell invasiveness. Cancers, 2022, 14(23), 5917. doi: 10.3390/cancers14235917 PMID: 36497399
  31. Guo, Y.; Li, Z.; Chen, F.; Chai, Y. Polyphenols in oral health: Homeostasis maintenance, disease prevention, and therapeutic applications. Nutrients, 2023, 15(20), 4384. doi: 10.3390/nu15204384 PMID: 37892459
  32. Tossetta, G.; Fantone, S.; Licini, C.; Marzioni, D.; Mattioli-Belmonte, M. The multifaced role of HtrA1 in the development of joint and skeletal disorders. Bone, 2022, 157, 116350. doi: 10.1016/j.bone.2022.116350
  33. Tossetta, G.; Marzioni, D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol. Res., 2022, 183, 106365. doi: 10.1016/j.phrs.2022.106365
  34. Bakun, P.; Mlynarczyk, D.T.; Koczorowski, T.; Cerbin-Koczorowska, M.; Piwowarczyk, L.; Kolasinski, E.; Stawny, M.; Kuzminska, J.; Jelinska, A.; Goslinski, T. Tea-break with epigallocatechin gallate derivatives : Powerful polyphenols of great potential for medicine. Eur. J. Med. Chem., 2023, 261, 115820. doi: 10.1016/j.ejmech.2023.115820
  35. Niedzwiecki, A.; Roomi, M.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552. doi: 10.3390/nu8090552 PMID: 27618095
  36. Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930. doi: 10.3390/molecules24162930 PMID: 31412624
  37. Yuandani, I.; Rohani, A.S.; Sumantri, I.B. Immunomodulatory effects and mechanisms of Curcuma Species and their bioactive compounds: A review. Front. Pharmacol., 2021, 12, 643119. doi: 10.3389/fphar.2021.643119
  38. Sutarsi Jati, P.T.; Wiradiestia, D.; Altway, A.; Winardi, S.; Wahyudiono Machmudah, S. Extraction process optimization of curcumin from Curcuma xanthorrhiza Roxb. with supercritical carbon dioxide using ethanol as a cosolvent. ACS Omega, 2024, 9(1), 1251-1264. doi: 10.1021/acsomega.3c07497 PMID: 38239285
  39. Cai, J.; Qiao, Y.; Chen, L.; Lu, Y.; Zheng, D. Regulation of the notch signaling pathway by natural products for cancer therapy. J. Nutr. Biochem., 2023, 109483. doi: 10.1016/j.jnutbio.2023.109483 PMID: 37848105
  40. Mundekkad, D.; Cho, W.C. Applications of curcumin and its nanoforms in the treatment of cancer. Pharmaceutics, 2023, 15(9), 2223. doi: 10.3390/pharmaceutics15092223 PMID: 37765192
  41. Zhu, X.; Quan, Y.Y.; Yin, Z.J.; Li, M.; Wang, T.; Zheng, L.Y.; Feng, S.Q.; Zhao, J.N.; Li, L. Sources, morphology, phytochemistry, pharmacology of Curcumae Longae Rhizoma, Curcumae Radix, and Curcumae Rhizoma : A review of the literature. Front. Pharmacol., 2023, 14, 1229963. doi: 10.3389/fphar.2023.1229963
  42. Tossetta, G.; Fantone, S.; Giannubilo, S.R.; Marzioni, D. The multifaced actions of curcumin in pregnancy outcome. Antioxidants, 2021, 10(1), 126. doi: 10.3390/antiox10010126 PMID: 33477354
  43. Passos, C.L.A.; Polinati, R.M.; Ferreira, C.; dos Santos, N.A.N.; Lima, D.G.V.; da Silva, J.L.; Fialho, E. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells. Sci. Rep., 2023, 13(1), 13446. doi: 10.1038/s41598-023-40535-5 PMID: 37596331
  44. Iweala, E.J.; Oluwapelumi, A.E.; Dania, O.E.; Ugbogu, E.A. Bioactive phytoconstituents and their therapeutic potentials in the treatment of haematological cancers: A review. Life, 2023, 13(7), 1422. doi: 10.3390/life13071422 PMID: 37511797
  45. Luthra, P.M.; Lal, N. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur. J. Med. Chem., 2016, 109, 23-35. doi: 10.1016/j.ejmech.2015.11.049
  46. Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637. doi: 10.1021/acs.jmedchem.6b00975 PMID: 28074653
  47. Ming, T.; Tao, Q.; Tang, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Xu, H. Curcumin: An epigenetic regulator and its application in cancer. Biomed. Pharmacother., 2022, 156, 113956. doi: 10.1016/j.biopha.2022.113956
  48. Moetlediwa, M.T.; Ramashia, R.; Pheiffer, C.; Titinchi, S.J.J.; Mazibuko-Mbeje, S.E.; Jack, B.U. Therapeutic effects of curcumin derivatives against obesity and associated metabolic complications: A Review of in vitro and in vivo Studies. Int. J. Mol. Sci., 2023, 24(18), 14366. doi: 10.3390/ijms241814366 PMID: 37762669
  49. Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; De Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 2015, 10(5), 1615-1623. doi: 10.3892/etm.2015.2749 PMID: 26640527
  50. Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809. doi: 10.1016/j.bcp.2007.08.016 PMID: 17900536
  51. Xu, C.; Wang, M.; Guo, W.; Sun, W.; Liu, Y. Curcumin in osteosarcoma therapy: Combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy. Front. Oncol., 2021, 11, 672490. doi: 10.3389/fonc.2021.672490
  52. Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818. doi: 10.1021/mp700113r PMID: 17999464
  53. Tossetta, G.; Fantone, S.; Montanari, E.; Marzioni, D.; Goteri, G. Role of NRF2 in ovarian cancer. Antioxidants, 2022, 11(4), 663. doi: 10.3390/antiox11040663 PMID: 35453348
  54. Tossetta, G.; Fantone, S.; Marzioni, D.; Mazzucchelli, R. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer. Cancers, 2023, 15(11), 3037. doi: 10.3390/cancers15113037 PMID: 37296999
  55. Emanuelli, M.; Sartini, D.; Molinelli, E.; Campagna, R.; Pozzi, V.; Salvolini, E.; Simonetti, O.; Campanati, A.; Offidani, A. The double-edged sword of oxidative stress in skin damage and melanoma: From physiopathology to therapeutical approaches. Antioxidants, 2022, 11(4), 612. doi: 10.3390/antiox11040612 PMID: 35453297
  56. Campagna, R.; Mateuszuk, Ł.; Wojnar-Lason, K.; Kaczara, P.; Tworzydło, A.; Kij, A.; Bujok, R.; Mlynarski, J.; Wang, Y.; Sartini, D.; Emanuelli, M.; Chlopicki, S. Nicotinamide N-methyltransferase in endothelium protects against oxidant stress-induced endothelial injury. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(10), 119082. doi: 10.1016/j.bbamcr.2021.119082 PMID: 34153425
  57. Mourtas, S.; Lazar, A.N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S.G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem., 2014, 80, 175-183. doi: 10.1016/j.ejmech.2014.04.050
  58. Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1303-1312. doi: 10.1016/S0891-5849(00)00294-X PMID: 10889462
  59. Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One, 2019, 14(5), e0216711. doi: 10.1371/journal.pone.0216711 PMID: 31112588
  60. Sun, M.; Liu, N.; Sun, J.; Li, X.; Wang, H.; Zhang, W.; Xie, Q.; Wang, M. Curcumin regulates anti-inflammatory responses by AXL/JAK2/STAT3 signaling pathway in experimental autoimmune encephalomyelitis. Neurosci. Lett., 2022, 787, 136821. doi: 10.1016/j.neulet.2022.136821
  61. Aggarwal, S.; Takada, Y.; Singh, S.; Myers, J.N.; Aggarwal, B.B. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor‐κB signaling. Int. J. Cancer, 2004, 111(5), 679-692. doi: 10.1002/ijc.20333 PMID: 15252836
  62. Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347. doi: 10.2174/138945011794815356 PMID: 20955148
  63. Kuhad, A.; Chopra, K. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences. Eur. J. Pharmacol., 2007, 576(1-3), 34-42. doi: 10.1016/j.ejphar.2007.08.001 PMID: 17822693
  64. Subbaramaiah, K.; Dannenberg, A.J. Cyclooxygenase 2: A molecular target for cancer prevention and treatment. Trends Pharmacol. Sci., 2003, 24(2), 96-102. doi: 10.1016/S0165-6147(02)00043-3 PMID: 12559775
  65. Besasie, B.D.; Saha, A.; DiGiovanni, J.; Liss, M.A. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia, 2023, 91(1), 90-106. doi: 10.1177/03915603231202304 PMID: 37776274
  66. Marzioni, D.; Mazzucchelli, R.; Fantone, S.; Tossetta, G. NRF2 modulation in TRAMP mice: An in vivo model of prostate cancer. Mol. Biol. Rep., 2022, 50(1), 873-881. doi: 10.1007/s11033-022-08052-2 PMID: 36335520
  67. Saharkhiz, S.; Zarepour, A.; Nasri, N.; Cordani, M.; Zarrabi, A. A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy. Eur. J. Pharm. Sci., 2023, 50(1), 191-192. doi: 10.1016/j.ejps.2023.106600
  68. Liu, E.; Wu, J.; Cao, W.; Zhang, J.; Liu, W.; Jiang, X.; Zhang, X. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J. Neurooncol., 2007, 85(3), 263-270. doi: 10.1007/s11060-007-9421-4 PMID: 17594054
  69. Rinaldi, A.L.; Morse, M.A.; Fields, H.W.; Rothas, D.A.; Pei, P.; Rodrigo, K.A.; Renner, R.J.; Mallery, S.R. Curcumin activates the aryl hydrocarbon receptor yet significantly inhibits (-)-benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivation in oral squamous cell carcinoma cells and oral mucosa. Cancer Res., 2002, 62(19), 5451-5456. PMID: 12359752
  70. Chen, A.; Xu, J. Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288(3), G447-G456. doi: 10.1152/ajpgi.00209.2004 PMID: 15486348
  71. Khojaste, E.; Ahmadizadeh, C. Catechin metabolites along with curcumin inhibit proliferation and induce apoptosis in cervical cancer cells by regulating VEGF expression In-vitro. Nutr. Cancer, 2022, 74(3), 1048-1057. doi: 10.1080/01635581.2021.1936082 PMID: 34121550
  72. Bae, J.H.; Park, J.W.; Kwon, T.K. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem. Biophys. Res. Commun., 2003, 303(4), 1073-1079. doi: 10.1016/S0006-291X(03)00479-0 PMID: 12684045
  73. Memarzia, A.; Khazdair, M.R.; Behrouz, S.; Gholamnezhad, Z.; Jafarnezhad, M.; Saadat, S.; Boskabady, M.H. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors, 2021, 47(3), 311-350. doi: 10.1002/biof.1716 PMID: 33606322
  74. Jiang, M.; Gan, Y.; Li, Y.; Qi, Y.; Zhou, Z.; Fang, X.; Jiao, J.; Han, X.; Gao, W.; Zhao, J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int. J. Biol. Macromol., 2023, 2540, 126153. doi: 10.1016/j.ijbiomac.2023.126153
  75. Lao, C.D.; Ruffin, M.T.t.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10. doi: 10.1186/1472-6882-6-10
  76. Tabanelli, R.; Brogi, S.; Calderone, V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics, 2021, 13(10), 1715. doi: 10.3390/pharmaceutics13101715 PMID: 34684008
  77. Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762. doi: 10.1002/jsfa.11372 PMID: 34143894
  78. Hsu, K.Y.; Ho, C.T.; Pan, M.H. The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies. Yao Wu Shi Pin Fen Xi, 2023, 31(2), 194-211. doi: 10.38212/2224-6614.3454 PMID: 37335161
  79. He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213. doi: 10.3390/molecules20059183 PMID: 26007179
  80. Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug. Des. Devel. Ther., 2021, 15, 4503-4525. doi: 10.2147/DDDT.S327378
  81. Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients, 2019, 11(8), 1837. doi: 10.3390/nu11081837 PMID: 31398884
  82. Manghani, C.; Gupta, A.; Tripathi, V.; Rani, V. Cardioprotective potential of curcumin against norepinephrine‐induced cell death: A microscopic study. J. Microsc., 2017, 265(2), 232-244. doi: 10.1111/jmi.12492 PMID: 27779739
  83. Abadi, A.J.; Mirzaei, S.; Mahabady, M.K.; Hashemi, F.; Zabolian, A.; Hashemi, F.; Raee, P.; Aghamiri, S.; Ashrafizadeh, M.; Aref, A.R.; Hamblin, M.R.; Hushmandi, K.; Zarrabi, A.; Sethi, G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res., 2022, 36(1), 189-213. doi: 10.1002/ptr.7305 PMID: 34697839
  84. Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153. PMID: 19594223
  85. Plummer, S.M.; Holloway, K.A.; Manson, M.M.; Munks, R.J.L.; Kaptein, A.; Farrow, S.; Howells, L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene, 1999, 18(44), 6013-6020. doi: 10.1038/sj.onc.1202980 PMID: 10557090
  86. Termini, D.; Den Hartogh, D.J.; Jaglanian, A.; Tsiani, E. Curcumin against prostate cancer: Current evidence. Biomolecules, 2020, 10(11), 1536. doi: 10.3390/biom10111536 PMID: 33182828
  87. Wan Mohd Tajuddin, W.N.B.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients, 2019, 11(12), 2989. doi: 10.3390/nu11122989 PMID: 31817718
  88. Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58, 152740. doi: 10.1016/j.phymed.2018.11.001
  89. Nagaraju, G.P.; Benton, L.; Bethi, S.R.; Shoji, M.; El-Rayes, B.F. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int. J. Cancer, 2019, 145(1), 10-19. doi: 10.1002/ijc.31867 PMID: 30226272
  90. Almalki, Z.; Algregri, M.; Alhosin, M.; Alkhaled, M.; Damiati, S.; Zamzami, M.A. In vitro cytotoxicity of curcuminoids against head and neck cancer HNO97 cell line. Braz. J. Biol., 2021, 83, e248708.
  91. Zhou, H.; Ning, Y.; Zeng, G.; Zhou, C.; Ding, X. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT. Oncol. Rep., 2021, 45(4), 11. doi: 10.3892/or.2021.7962 PMID: 33649826
  92. Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773. doi: 10.1093/carcin/bgm123 PMID: 17522064
  93. Simon, A.; Allais, D.P.; Duroux, J.L.; Basly, J.P.; Durand-Fontanier, S.; Delage, C. Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure–activity relationships. Cancer Lett., 1998, 129(1), 111-116. doi: 10.1016/S0304-3835(98)00092-5 PMID: 9714342
  94. Chearwae, W.; Anuchapreeda, S.; Nandigama, K.; Ambudkar, S.V.; Limtrakul, P. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem. Pharmacol., 2004, 68(10), 2043-2052. doi: 10.1016/j.bcp.2004.07.009 PMID: 15476675
  95. Bonté, F.; Noel-Hudson, M.S.; Wepierre, J.; Meybeck, A. Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress. Planta Med., 1997, 63(3), 265-266. doi: 10.1055/s-2006-957669 PMID: 9225611
  96. Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611. doi: 10.1016/j.bcp.2008.08.008 PMID: 18775680
  97. Noureddin, S.A.; El-Shishtawy, R.M.; Al-Footy, K.O. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur. J. Med. Chem., 2019, 182, 111631. doi: 10.1016/j.ejmech.2019.111631
  98. Zhao, C.; Zhou, X.; Cao, Z.; Ye, L.; Cao, Y.; Pan, J. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms. Phytomedicine, 2023, 119, 154986. doi: 10.1016/j.phymed.2023.154986
  99. Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033. doi: 10.3390/ijms20051033 PMID: 30818786
  100. Lu, K.H.; Lu, P.W.A.; Lu, E.W.H.; Lin, C.W.; Yang, S.F. Curcumin and its analogs and carriers: Potential therapeutic strategies for human osteosarcoma. Int. J. Biol. Sci., 2023, 19(4), 1241-1265. doi: 10.7150/ijbs.80590 PMID: 36923933
  101. Dende, C.; Meena, J.; Nagarajan, P.; Nagaraj, V.A.; Panda, A.K.; Padmanaban, G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria. Sci. Rep., 2017, 7(1), 10062. doi: 10.1038/s41598-017-10672-9 PMID: 28855623
  102. Amano, C.; Minematsu, H.; Fujita, K.; Iwashita, S.; Adachi, M.; Igarashi, K.; Hinuma, S. Nanoparticles containing curcumin useful for suppressing macrophages in vivo in mice. PLoS One, 2015, 10(9), e0137207. doi: 10.1371/journal.pone.0137207 PMID: 26361331
  103. Lee, W.H.; Loo, C.Y.; Young, P.M.; Traini, D.; Mason, R.S.; Rohanizadeh, R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin. Drug Deliv., 2014, 11(8), 1183-1201. doi: 10.1517/17425247.2014.916686 PMID: 24857605
  104. Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250. doi: 10.1039/C1NR11271F PMID: 22080352
  105. Hatefi, A.; Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Control. Release, 2002, 80(1-3), 9-28. doi: 10.1016/S0168-3659(02)00008-1 PMID: 11943384
  106. Altunbas, A.; Lee, S.J.; Rajasekaran, S.A.; Schneider, J.P.; Pochan, D.J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 2011, 32(25), 5906-5914. doi: 10.1016/j.biomaterials.2011.04.069 PMID: 21601921
  107. Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human serum albumin nanoparticles for use in cancer drug delivery: Process optimization and in vitro characterization. Nanomaterials, 2016, 6(6), 116. doi: 10.3390/nano6060116 PMID: 28335244
  108. Song, W.; Muthana, M.; Mukherjee, J.; Falconer, R.J.; Biggs, C.A.; Zhao, X. Magnetic-silk core–shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater. Sci. Eng., 2017, 3(6), 1027-1038. doi: 10.1021/acsbiomaterials.7b00153 PMID: 33429579
  109. Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B Biointerfaces, 2010, 79(1), 113-125. doi: 10.1016/j.colsurfb.2010.03.039 PMID: 20456930
  110. Bano, N.; Yadav, M.; Das, B.C. Differential inhibitory effects of curcumin between HPV+ve and HPV-ve Oral cancer stem cells. Front Oncol, 2018, 8, 412. doi: 10.3389/fonc.2018.00412
  111. Mishra, A.; Kumar, R.; Tyagi, A.; Kohaar, I.; Hedau, S.; Bharti, A.C.; Sarker, S.; Dey, D.; Saluja, D.; Das, B. Curcumin modulates cellular AP-1, NF-κB, and HPV16 E6 proteins in oral cancer. Ecancer. Med. Sci., 2015, 9, 525. doi: 10.3332/ecancer.2015.525
  112. Pozzi, V.; Salvolini, E.; Lucarini, G.; Salvucci, A.; Campagna, R.; Rubini, C.; Sartini, D.; Emanuelli, M. Cancer stem cell enrichment is associated with enhancement of nicotinamide N‐methyltransferase expression. IUBMB Life, 2020, 72(7), 1415-1425. doi: 10.1002/iub.2265 PMID: 32150326
  113. Pajonk, F.; Vlashi, E.; McBride, W.H. Radiation resistance of cancer stem cells: The 4 R’s of radiobiology revisited. Stem Cells, 2010, 28(4), 639-648. doi: 10.1002/stem.318 PMID: 20135685
  114. Liu, C.; Kelnar, K.; Liu, B.; Chen, X.; Calhoun-Davis, T.; Li, H.; Patrawala, L.; Yan, H.; Jeter, C.; Honorio, S.; Wiggins, J.F.; Bader, A.G.; Fagin, R.; Brown, D.; Tang, D.G. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med., 2011, 17(2), 211-215. doi: 10.1038/nm.2284 PMID: 21240262
  115. Lelli, D.; Pedone, C.; Majeed, M.; Sahebkar, A. Curcumin and lung cancer: The role of microRNAs. Curr. Pharm. Des., 2017, 23(23), 3440-3444. doi: 10.2174/1381612823666170109144818 PMID: 28067164
  116. Alam, M.; Kashyap, T.; Pramanik, K.K.; Singh, A.K.; Nagini, S.; Mishra, R. The elevated activation of NFκB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance. Clin. Oral Investig., 2017, 21(9), 2721-2731. doi: 10.1007/s00784-017-2074-6 PMID: 28233171
  117. Liu, T.; Long, T.; Li, H. Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway. Exp. Ther. Med., 2021, 21(3), 202. doi: 10.3892/etm.2021.9635 PMID: 33500696
  118. Hung, C.M.; Su, Y.H.; Lin, H.Y.; Lin, J.N.; Liu, L.C.; Ho, C.T.; Way, T.D. Demethoxycurcumin modulates prostate cancer cell proliferation via AMPK-induced down-regulation of HSP70 and EGFR. J. Agric. Food Chem., 2012, 60(34), 8427-8434. doi: 10.1021/jf302754w PMID: 22849866
  119. Wu, J.; Patmore, D.M.; Jousma, E.; Eaves, D.W.; Breving, K.; Patel, A.V.; Schwartz, E.B.; Fuchs, J.R.; Cripe, T.P.; Stemmer-Rachamimov, A.O.; Ratner, N. EGFR–STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors. Oncogene, 2014, 33(2), 173-180. doi: 10.1038/onc.2012.579 PMID: 23318430
  120. Zhen, L.; Fan, D.; Yi, X.; Cao, X.; Chen, D.; Wang, L. Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int. J. Clin. Exp. Pathol., 2014, 7(10), 6438-6446. PMID: 25400722
  121. Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890. doi: 10.1016/j.cell.2009.11.007 PMID: 19945376
  122. Iwatsuki, M.; Mimori, K.; Yokobori, T.; Ishi, H.; Beppu, T.; Nakamori, S.; Baba, H.; Mori, M. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci., 2010, 101(2), 293-299. doi: 10.1111/j.1349-7006.2009.01419.x PMID: 19961486
  123. Lee, A.Y.L.; Fan, C.C.; Chen, Y.A.; Cheng, C.W.; Sung, Y.J.; Hsu, C.P.; Kao, T.Y. Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway. Integr. Cancer Ther., 2015, 14(5), 484-490. doi: 10.1177/1534735415588930 PMID: 26036622
  124. Tossetta, G.; Fantone, S.; Giannubilo, S.R.; Marinelli Busilacchi, E.; Ciavattini, A.; Castellucci, M.; Di Simone, N.; Mattioli-Belmonte, M.; Marzioni, D. Pre‐eclampsia onset and SPARC: A possible involvement in placenta development. J. Cell. Physiol., 2019, 234(5), 6091-6098. doi: 10.1002/jcp.27344 PMID: 30426491
  125. Sarrand, J.; Soyfoo, M.S. Involvement of epithelial-mesenchymal transition (EMT) in autoimmune diseases. Int. J. Mol. Sci., 2023, 24(19), 14481. doi: 10.3390/ijms241914481 PMID: 37833928
  126. Akhurst, R.J. From shape shifting embryonic cells to oncology: The fascinating history of epithelial mesenchymal transition. Semin. Cancer. Biol., 2023, 96, 100-114. doi: 10.1016/j.semcancer.2023.10.003
  127. Acloque, H.; Adams, M.S.; Fishwick, K.; Bronner-Fraser, M.; Nieto, M.A. Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease. J. Clin. Invest., 2009, 119(6), 1438-1449. doi: 10.1172/JCI38019 PMID: 19487820
  128. Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2002, 2(6), 442-454. doi: 10.1038/nrc822 PMID: 12189386
  129. Krisanaprakornkit, S.; Iamaroon, A. Epithelial-mesenchymal transition in oral squamous cell carcinoma. ISRN Oncol., 2012, 2012, 681469. doi: 10.5402/2012/681469
  130. Campagna, R.; Cecati, M.; Pozzi, V.; Fumarola, S.; Pompei, V.; Milanese, G.; Galosi, A.B.; Sartini, D.; Emanuelli, M. Involvement of transforming growth factor beta 1 in the transcriptional regulation of nicotinamide N-methyltransferase in clear cell renal cell carcinoma. Cell. Mol. Biol., 2018, 64(7), 51-55. doi: 10.14715/cmb/2018.64.7.9 PMID: 29974846
  131. Huang, X.; Gan, G.; Wang, X.; Xu, T.; Xie, W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy, 2019, 15(7), 1258-1279. doi: 10.1080/15548627.2019.1580105 PMID: 30786811
  132. Ohnishi, Y.; Sakamoto, T.; Zhengguang, L.; Yasui, H.; Hamada, H.; Kubo, H.; Nakajima, M. Curcumin inhibits epithelial‑mesenchymal transition in oral cancer cells via c‑Met blockade. Oncol. Lett., 2020, 19(6), 4177-4182. doi: 10.3892/ol.2020.11523 PMID: 32391111
  133. Chen, H.W.; Huang, H.C. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br. J. Pharmacol., 1998, 124(6), 1029-1040. doi: 10.1038/sj.bjp.0701914 PMID: 9720770
  134. Sahin, K.; Orhan, C.; Tuzcu, M.; Sahin, N.; Tastan, H.; Özercan, İ.H.; Güler, O.; Kahraman, N.; Kucuk, O.; Ozpolat, B. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prev. Res., 2018, 11(1), 59-67. doi: 10.1158/1940-6207.CAPR-16-0289 PMID: 29089332
  135. Díaz Osterman, C.J.; Gonda, A.; Stiff, T.; Sigaran, U.; Asuncion Valenzuela, M.M.; Ferguson Bennit, H.R.; Moyron, R.B.; Khan, S.; Wall, N.R. Curcumin induces pancreatic adenocarcinoma cell death via reduction of the inhibitors of apoptosis. Pancreas, 2016, 45(1), 101-109. doi: 10.1097/MPA.0000000000000411 PMID: 26348467
  136. Chien, M.H.; Yang, W.E.; Yang, Y.C.; Ku, C.C.; Lee, W.J.; Tsai, M.Y.; Lin, C.W.; Yang, S.F. Dual targeting of the p38 MAPK-HO-1 Axis and cIAP1/XIAP by demethoxycurcumin triggers caspase-mediated apoptotic cell death in oral squamous cell carcinoma cells. Cancers, 2020, 12(3), 703. doi: 10.3390/cancers12030703 PMID: 32188144
  137. Qi, S.; Mogi, S.; Tsuda, H.; Tanaka, Y.; Kozaki, K.; Imoto, I.; Inazawa, J.; Hasegawa, S.; Omura, K. Expression of cIAP-1 correlates with nodal metastasis in squamous cell carcinoma of the tongue. Int. J. Oral Maxillofac. Surg., 2008, 37(11), 1047-1053. doi: 10.1016/j.ijom.2008.06.004 PMID: 18621506
  138. Nagata, M.; Nakayama, H.; Tanaka, T.; Yoshida, R.; Yoshitake, Y.; Fukuma, D.; Kawahara, K.; Nakagawa, Y.; Ota, K.; Hiraki, A.; Shinohara, M. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br. J. Cancer, 2011, 105(9), 1322-1330. doi: 10.1038/bjc.2011.387 PMID: 21952624
  139. Tanaka, T.; Nakayama, H.; Yoshitake, Y.; Irie, A.; Nagata, M.; Kawahara, K.; Takamune, Y.; Yoshida, R.; Nakagawa, Y.; Ogi, H.; Shinriki, S.; Ota, K.; Hiraki, A.; Ikebe, T.; Nishimura, Y.; Shinohara, M. Selective inhibition of nuclear factor‐κB by nuclear factor‐κB essential modulator‐binding domain peptide suppresses the metastasis of highly metastatic oral squamous cell carcinoma. Cancer Sci., 2012, 103(3), 455-463. doi: 10.1111/j.1349-7006.2011.02174.x PMID: 22136381
  140. Tanimoto, T.; Tsuda, H.; Imazeki, N.; Ohno, Y.; Imoto, I.; Inazawa, J.; Matsubara, O. Nuclear expression of cIAP-1, an apoptosis inhibiting protein, predicts lymph node metastasis and poor patient prognosis in head and neck squamous cell carcinomas. Cancer Lett., 2005, 224(1), 141-151. doi: 10.1016/j.canlet.2004.11.049 PMID: 15911110
  141. Yanagawa, T.; Omura, K.; Harada, H.; Nakaso, K.; Iwasa, S.; Koyama, Y.; Onizawa, K.; Yusa, H.; Yoshida, H. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol., 2004, 40(1), 21-27. doi: 10.1016/S1368-8375(03)00128-3 PMID: 14662411
  142. Markopoulos, A.K. Current aspects on oral squamous cell carcinoma. Open Dent J., 2012, 6, 126-130. doi: 10.2174/1874210601206010126
  143. Tanaka, T.; Ishigamori, R. Understanding carcinogenesis for fighting oral cancer. J. Oncol., 2011, 2011, 603740. doi: 10.1155/2011/603740
  144. Maulina, T.; Widayanti, R.; Hardianto, A.; Sjamsudin, E.; Pontjo, B.; Yusuf, H.Y. The usage of curcumin as chemopreventive agent for oral squamous cell carcinoma: An experimental study on sprague-dawley rat. Integr Cancer Ther, 2019, 2019, 1534735418822094. doi: 10.1177/1534735418822094
  145. Hsieh, M.T.; Chang, L.C.; Hung, H.Y.; Lin, H.Y.; Shih, M.H.; Tsai, C.H.; Kuo, S.C.; Lee, K.H. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo. Eur J Med Chem, 2017, 131, 141-151. doi: 10.1016/j.ejmech.2017.03.006
  146. Chiu, Y.J.; Tsai, F.J.; Bau, D.T.; Chang, L.C.; Hsieh, M.T.; Lu, C.C.; Kuo, S.C.; Yang, J.S. Next‑generation sequencing analysis reveals that MTH‑3, a novel curcuminoid derivative, suppresses the invasion of MDA‑MB‑231 triple‑negative breast adenocarcinoma cells. Oncol. Rep., 2021, 46(1), 133. doi: 10.3892/or.2021.8084 PMID: 34013378
  147. Tsai, S.C.; Yang, J.S.; Lu, C.C.; Tsai, F.J.; Chiu, Y.J.; Kuo, S.C. MTH-3 sensitizes oral cancer cells to cisplatin via regulating TFEB. J. Pharm. Pharmacol., 2022, 74(9), 1261-1273. doi: 10.1093/jpp/rgac056 PMID: 35880728
  148. Selvendiran, K.; Ahmed, S.; Dayton, A.; Kuppusamy, M.L.; Rivera, B.K.; Kálai, T.; Hideg, K.; Kuppusamy, P. HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer Biol. Ther., 2011, 12(9), 837-845. doi: 10.4161/cbt.12.9.17713 PMID: 21885917
  149. Dayton, A.; Selvendiran, K.; Kuppusamy, M.L.; Rivera, B.K.; Meduru, S.; Kálai, T.; Hideg, K.; Kuppusamy, P. Cellular uptake, retention and bioabsorption of HO-3867, a fluorinated curcumin analog with potential antitumor properties. Cancer Biol. Ther., 2010, 10(10), 1027-1032. doi: 10.4161/cbt.10.10.13250 PMID: 20798598
  150. Madan, E.; Parker, T.M.; Bauer, M.R.; Dhiman, A.; Pelham, C.J.; Nagane, M.; Kuppusamy, M.L.; Holmes, M.; Holmes, T.R.; Shaik, K.; Shee, K.; Kiparoidze, S.; Smith, S.D.; Park, Y.S.A.; Gomm, J.J.; Jones, L.J.; Tomás, A.R.; Cunha, A.C.; Selvendiran, K.; Hansen, L.A.; Fersht, A.R.; Hideg, K.; Gogna, R.; Kuppusamy, P. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. J. Biol. Chem., 2018, 293(12), 4262-4276. doi: 10.1074/jbc.RA117.000950 PMID: 29382728
  151. Chen, C.W.; Hsieh, M.J.; Ju, P.C.; Hsieh, Y.H.; Su, C.W.; Chen, Y.L.; Yang, S.F.; Lin, C.W. Curcumin analog HO‐3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells. J. Cell. Mol. Med., 2022, 26(8), 2273-2284. doi: 10.1111/jcmm.17248 PMID: 35191177
  152. He, Y.; Li, W.; Hu, G.; Sun, H.; Kong, Q. Bioactivities of EF24, a novel curcumin analog: A review. Front Oncol, 2018, 8, 614. doi: 10.3389/fonc.2018.00614
  153. Hoffmann, M.; Saleh-Ebrahimi, L.; Zwicker, F.; Haering, P.; Schwahofer, A.; Debus, J.; Huber, P.E.; Roeder, F. Long term results of postoperative Intensity-Modulated Radiation Therapy (IMRT) in the treatment of Squamous Cell Carcinoma (SCC) located in the oropharynx or oral cavity. Radiat. Oncol., 2015, 10, 451. doi: 10.1186/s13014-015-0561-y
  154. Santabarbara, G.; Maione, P.; Rossi, A.; Gridelli, C. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opin. Pharmacother., 2016, 17(4), 561-570. doi: 10.1517/14656566.2016.1122757 PMID: 26581586
  155. Kim, C.D.; Cha, J.D.; Li, S.; Cha, I.H. The mechanism of acacetin-induced apoptosis on oral squamous cell carcinoma. Arch. Oral Biol., 2015, 60(9), 1283-1298. doi: 10.1016/j.archoralbio.2015.05.009 PMID: 26099663
  156. Iwayama, H.; Sakamoto, T.; Nawa, A.; Ueda, N. Crosstalk between smad and mitogen-activated protein kinases for the regulation of apoptosis in cyclosporine a induced renal tubular injury. Nephron Extra, 2011, 1(1), 178-189. doi: 10.1159/000333014 PMID: 22470391
  157. Lin, C.; Tu, C.; Ma, Y.; Ye, P.; Shao, X.; Yang, Z.; Fang, Y. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma. Mol. Med. Rep., 2017, 16(4), 4927-4933. doi: 10.3892/mmr.2017.7189 PMID: 28791378
  158. Shimazu, K.; Inoue, M.; Sugiyama, S.; Fukuda, K.; Yoshida, T.; Taguchi, D.; Uehara, Y.; Kuriyama, S.; Tanaka, M.; Miura, M.; Nanjyo, H.; Iwabuchi, Y.; Shibata, H. Curcumin analog, GO ‐Y078, overcomes resistance to tumor angiogenesis inhibitors. Cancer Sci., 2018, 109(10), 3285-3293. doi: 10.1111/cas.13741 PMID: 30024080
  159. Chien, M.H.; Shih, P.C.; Ding, Y.F.; Chen, L.H.; Hsieh, F.K.; Tsai, M.Y.; Li, P.Y.; Lin, C.W.; Yang, S.F. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity. Expert Opin. Ther. Targets, 2022, 26(4), 375-388. doi: 10.1080/14728222.2022.2061349 PMID: 35361044
  160. Lin, L.; Deangelis, S.; Foust, E.; Fuchs, J.; Li, C.; Li, P.K.; Schwartz, E.B.; Lesinski, G.B.; Benson, D.; Lu, J. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol. Cancer, 2010, 9, 217. doi: 10.1186/1476-4598-9-217
  161. Lin, L.; Hutzen, B.; Zuo, M.; Ball, S.; Deangelis, S.; Foust, E.; Pandit, B.; Ihnat, M.A.; Shenoy, S.S.; Kulp, S.; Li, P.K.; Li, C.; Fuchs, J.; Lin, J. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res., 2010, 70(6), 2445-2454. doi: 10.1158/0008-5472.CAN-09-2468 PMID: 20215512
  162. Jahangiri, A.; Dadmanesh, M.; Ghorban, K. STAT3 inhibition reduced PD‐L1 expression and enhanced antitumor immune responses. J. Cell. Physiol., 2020, 235(12), 9457-9463. doi: 10.1002/jcp.29750 PMID: 32401358
  163. Su, C.W.; Chuang, C.Y.; Chen, Y.T.; Yang, W.E.; Pan, Y.P.; Lin, C.W.; Yang, S.F. FLLL32 triggers caspase-mediated apoptotic cell death in human oral cancer cells by regulating the p38 pathway. Int. J. Mol. Sci., 2021, 22(21), 11860. doi: 10.3390/ijms222111860 PMID: 34769290
  164. Yadav, V.R.; Sahoo, K.; Awasthi, V. Preclinical evaluation of 4‐3,5‐bis(2‐chlorobenzylidene)‐4‐oxo‐piperidine‐1‐yl‐4‐oxo‐2‐butenoic acid, in a mouse model of lung cancer xenograft. Br. J. Pharmacol., 2013, 170(7), 1436-1448. doi: 10.1111/bph.12406 PMID: 24102070
  165. Yang, J.S.; Lin, R.C.; Hsieh, Y.H.; Wu, H.H.; Li, G.C.; Lin, Y.C.; Yang, S.F.; Lu, K.H. CLEFMA activates the extrinsic and intrinsic apoptotic processes through JNK1/2 and p38 pathways in human osteosarcoma cells. Molecules, 2019, 24(18), 3280. doi: 10.3390/molecules24183280 PMID: 31505816
  166. Chen, P.N.; Lin, C.W.; Yang, S.F.; Chang, Y.C. CLEFMA induces the apoptosis of oral squamous carcinoma cells through the regulation of the P38/HO-1 signalling pathway. Cancers, 2022, 14(22), 5519. doi: 10.3390/cancers14225519 PMID: 36428612
  167. Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control Release, 2019, 316, 359-380. doi: 10.1016/j.jconrel.2019.10.053
  168. Hinger, D.; Navarro, F.; Käch, A.; Thomann, J.S.; Mittler, F.; Couffin, A.C.; Maake, C. Photoinduced effects of m-tetrahydroxyphenylchlorin loaded lipid nanoemulsions on multicellular tumor spheroids. J. Nanobiotechnol., 2016, 14(1), 68. doi: 10.1186/s12951-016-0221-x PMID: 27604187
  169. Gonçalves, R.F.S.; Martins, J.T.; Abrunhosa, L.; Vicente, A.A.; Pinheiro, A.C. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: Effect of emulsifier type. Nanomaterials, 2021, 11(3), 815. doi: 10.3390/nano11030815 PMID: 33806777
  170. Akbari Dilmaghani, N.; Safaroghli-Azar, A.; Pourbagheri-Sigaroodi, A.; Bashash, D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life, 2021, 73(4), 618-642. doi: 10.1002/iub.2446 PMID: 33476088
  171. Harsha, C.; Banik, K.; Ang, H.L.; Girisa, S.; Vikkurthi, R.; Parama, D.; Rana, V.; Shabnam, B.; Khatoon, E.; Kumar, A.P.; Kunnumakkara, A.B. Targeting AKT/mTOR in oral cancer: Mechanisms and advances in clinical trials. Int. J. Mol. Sci., 2020, 21(9), 3285. doi: 10.3390/ijms21093285 PMID: 32384682
  172. Liu, W.; Wang, J.; Zhang, C.; Bao, Z.; Wu, L. Curcumin nanoemulsions inhibit oral squamous cell carcinoma cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation: A preliminary study. Oral Dis., 2022, 29(8), 3183-3192. doi: 10.1111/odi.14271 PMID: 35689522
  173. Gota, V.S.; Maru, G.B.; Soni, T.G.; Gandhi, T.R.; Kochar, N.; Agarwal, M.G. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem., 2010, 58(4), 2095-2099. doi: 10.1021/jf9024807 PMID: 20092313
  174. Setthacheewakul, S.; Mahattanadul, S.; Phadoongsombut, N.; Pichayakorn, W.; Wiwattanapatapee, R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur. J. Pharm. Biopharm., 2010, 76(3), 475-485. doi: 10.1016/j.ejpb.2010.07.011 PMID: 20659556
  175. Konwarh, R.; Saikia, J.P.; Karak, N.; Konwar, B.K. ‘Poly(ethylene glycol)-magnetic nanoparticles-curcumin’ trio: Directed morphogenesis and synergistic free-radical scavenging. Colloids Surf. B Biointerfaces, 2010, 81(2), 578-586. doi: 10.1016/j.colsurfb.2010.07.062 PMID: 20729041
  176. Lin, H.Y.; Thomas, J.L.; Chen, H.W.; Shen, C.M.; Yang, W.J.; Lee, M.H. In vitro suppression of oral squamous cell carcinoma growth by ultrasound-mediated delivery of curcumin microemulsions. Int. J. Nanomed., 2012, 7, 941-951. doi: 10.2147/IJN.S28510
  177. Guo, Y.; Wang, X.Y.; Chen, Y.L.; Liu, F.Q.; Tan, M.X.; Ao, M.; Yu, J.H.; Ran, H.T.; Wang, Z.X. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy. Acta Biomater., 2018, 80, 308-326. doi: 10.1016/j.actbio.2018.09.024
  178. Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. The performance of nanocarriers for transmucosal drug delivery. Expert Opin. Drug Deliv., 2006, 3(4), 463-478. doi: 10.1517/17425247.3.4.463 PMID: 16822222
  179. Arias, J. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules, 2008, 13(10), 2340-2369. doi: 10.3390/molecules13102340 PMID: 18830159
  180. Gao, Z.; Li, Z.; Yan, J.; Wang, P. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug. Des. Devel. Ther., 2017, 11, 2595-2604. doi: 10.2147/DDDT.S140797
  181. Safarzadeh, E.; Sandoghchian Shotorbani, S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull., 2014, 4(Suppl. 1), 421-427. doi: 10.5681/apb.2014.062 PMID: 25364657
  182. Zhang, R.X.; Wong, H.L.; Xue, H.Y.; Eoh, J.Y.; Wu, X.Y. Nanomedicine of synergistic drug combinations for cancer therapy : Strategies and perspectives. J. Control Release, 2016, 240, 489-503. doi: 10.1016/j.jconrel.2016.06.012
  183. Srivastava, S.; Mohammad, S.; Pant, A.B.; Mishra, P.R.; Pandey, G.; Gupta, S.; Farooqui, S. Co-delivery of 5-fluorouracil and curcumin nanohybrid formulations for improved chemotherapy against oral squamous cell carcinoma. J. Maxillofac. Oral Surg., 2018, 17(4), 597-610. doi: 10.1007/s12663-018-1126-z PMID: 30344406
  184. Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218. doi: 10.1208/s12248-012-9432-8 PMID: 23143785
  185. Kim, S.G.; Veena, M.S.; Basak, S.K.; Han, E.; Tajima, T.; Gjertson, D.W.; Starr, J.; Eidelman, O.; Pollard, H.B.; Srivastava, M.; Srivatsan, E.S.; Wang, M.B. Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: A pilot study. Clin. Cancer Res., 2011, 17(18), 5953-5961. doi: 10.1158/1078-0432.CCR-11-1272 PMID: 21821700
  186. Cohen, A.N.; Veena, M.S.; Srivatsan, E.S.; Wang, M.B. Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa beta kinase. Arch. Otolaryngol. Head Neck Surg., 2009, 135(2), 190-197. doi: 10.1001/archotol.135.2.190 PMID: 19221248
  187. Duarte, V.M.; Han, E.; Veena, M.S.; Salvado, A.; Suh, J.D.; Liang, L.J.; Faull, K.F.; Srivatsan, E.S.; Wang, M.B. Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKβ protein of the NFκB pathway. Mol. Cancer Ther., 2010, 9(10), 2665-2675. doi: 10.1158/1535-7163.MCT-10-0064 PMID: 20937593
  188. St John, M.A.; Li, Y.; Zhou, X.; Denny, P.; Ho, C.M.; Montemagno, C.; Shi, W.; Qi, F.; Wu, B.; Sinha, U.; Jordan, R.; Wolinsky, L.; Park, N.H.; Liu, H.; Abemayor, E.; Wong, D.T. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg., 2004, 130(8), 929-935. doi: 10.1001/archotol.130.8.929 PMID: 15313862
  189. Rhodus, N.L.; Ho, V.; Miller, C.S.; Myers, S.; Ondrey, F. NF-κB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma. Cancer Detect. Prev., 2005, 29(1), 42-45. doi: 10.1016/j.cdp.2004.10.003 PMID: 15734216
  190. Laura, V.; Mattia, F.; Roberta, G.; Federico, I.; Emi, D.; Chiara, T.; Luca, B.; Elena, C. Potential of curcumin in skin disorders. Nutrients, 2019, 11(9), 2169. doi: 10.3390/nu11092169 PMID: 31509968
  191. Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376. doi: 10.3390/nu11102376 PMID: 31590362
  192. Agrawal, D.K.; Mishra, P.K. Curcumin and its analogues: Potential anticancer agents. Med. Res. Rev., 2010, 30(5), 818-860. doi: 10.1002/med.20188 PMID: 20027668
  193. Sethiya, A.; Agarwal, D.K.; Agarwal, S. Current trends in drug delivery system of curcumin and its therapeutic applications. Mini Rev. Med. Chem., 2020, 20(13), 1190-1232. doi: 10.2174/1389557520666200429103647 PMID: 32348221

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2025