Curcumin and its Analogues in Oral Squamous Cell Carcinoma: State-of-the-art and Therapeutic Potential
- Авторы: Schiavoni V.1, Emanuelli M.1, Sartini D.1, Salvolini E.1, Pozzi V.1, Campagna R.1
-
Учреждения:
- Department of Clinical Sciences, Polytechnic University of Marche
- Выпуск: Том 25, № 5 (2025)
- Страницы: 313-329
- Раздел: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694493
- DOI: https://doi.org/10.2174/0118715206297840240510063330
- ID: 694493
Цитировать
Полный текст
Аннотация
Oral Squamous Cell Carcinoma (OSCC) is the most common cancer arising from squamous epithelium in the oral cavity and is characterized by high aggressiveness and metastatic potential, which together with a late diagnosis results in a 5-year survival rate of only 50% of patients. The therapeutic options for OSCC management are limited and largely influenced by the cancer stage. While radical surgery can be curative in early stage of disease, most cases require adjuvant therapies, including chemotherapy and radiotherapy which, however, often achieve poor curative rates and are associated with important negative effects. Therefore, there is an urgent need to discover new alternative treatment strategies to improve patients’ outcomes. Several medicinal herbs are being studied for their preventive or therapeutic effect in several diseases, including cancer. In particular, the Indian spice curcumin, largely used in oriental countries, has been studied as a chemopreventive or adjuvant agent for different malignancies. Indeed, curcumin is characterized by important biological properties, including antioxidant, anti-inflammatory, and anticancer effects, which could also be exploited in OSCC. However, due to its limited bioavailability and poor aqueous solubility, this review is focused on studies designing new synthetic analogues and developing novel types of curcumin delivery systems to improve its pharmacokinetic and biological properties. Thus, this review analyses the potential therapeutic role of curcumin in OSCC by providing an overview of current in vitro and in vivo studies demonstrating the beneficial effects of curcumin and its analogues in OSCC.
Об авторах
Valentina Schiavoni
Department of Clinical Sciences, Polytechnic University of Marche
Email: info@benthamscience.net
Monica Emanuelli
Department of Clinical Sciences, Polytechnic University of Marche
Email: info@benthamscience.net
Davide Sartini
Department of Clinical Sciences, Polytechnic University of Marche
Email: info@benthamscience.net
Eleonora Salvolini
Department of Clinical Sciences, Polytechnic University of Marche
Автор, ответственный за переписку.
Email: info@benthamscience.net
Valentina Pozzi
Department of Clinical Sciences, Polytechnic University of Marche
Email: info@benthamscience.net
Roberto Campagna
Department of Clinical Sciences, Polytechnic University of Marche
Email: info@benthamscience.net
Список литературы
- Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11884-11894. PMID: 26617944
- Pickering, C.R.; Zhang, J.; Yoo, S.Y.; Bengtsson, L.; Moorthy, S.; Neskey, D.M.; Zhao, M.; Ortega Alves, M.V.; Chang, K.; Drummond, J.; Cortez, E.; Xie, T.; Zhang, D.; Chung, W.; Issa, J.P.J.; Zweidler-McKay, P.A.; Wu, X.; El-Naggar, A.K.; Weinstein, J.N.; Wang, J.; Muzny, D.M.; Gibbs, R.A.; Wheeler, D.A.; Myers, J.N.; Frederick, M.J. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov., 2013, 3(7), 770-781. doi: 10.1158/2159-8290.CD-12-0537 PMID: 23619168
- Fatima, J.; Fatima, E.; Mehmood, F.; Ishtiaq, I.; Khan, M.A.; Khurshid, H.M.S.; Kashif, M. Comprehensive analysis of oral squamous cell carcinomas: Clinical, epidemiological, and histopathological insights with a focus on prognostic factors and survival time. Cureus, 2024, 16(2), e54394. doi: 10.7759/cureus.54394 PMID: 38505442
- Mauceri, R.; Bazzano, M.; Coppini, M.; Tozzo, P.; Panzarella, V.; Campisi, G. Diagnostic delay of oral squamous cell carcinoma and the fear of diagnosis: A scoping review. Front. Psychol., 2022, 13, 1009080. doi: 10.3389/fpsyg.2022.1009080
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
- Wang, J.; Xie, T.; Wang, B.; William, W.N., Jr; Heymach, J.V.; El-Naggar, A.K.; Myers, J.N.; Caulin, C. PD-1 blockade prevents the development and progression of carcinogen-induced oral premalignant lesions. Cancer Prev. Res., 2017, 10(12), 684-693. doi: 10.1158/1940-6207.CAPR-17-0108 PMID: 29018057
- Vigneswaran, N.; Williams, M.D. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. North Am., 2014, 26(2), 123-141. doi: 10.1016/j.coms.2014.01.001 PMID: 24794262
- Yang, J.; Guo, K.; Zhang, A.; Zhu, Y.; Li, W.; Yu, J.; Wang, P. Survival analysis of age-related oral squamous cell carcinoma: A population study based on SEER. Eur. J. Med. Res., 2023, 28(1), 413. doi: 10.1186/s40001-023-01345-7 PMID: 37814268
- Kruse, A.L.; Bredell, M.; Grätz, K.W. Oral cancer in men and women: Are there differences? Oral Maxillofac. Surg., 2011, 15(1), 51-55. doi: 10.1007/s10006-010-0253-6 PMID: 21052752
- Güneri, P.; Epstein, J.B. Late stage diagnosis of oral cancer: Components and possible solutions. Oral Oncol., 2014, 50(12), 1131-1136. doi: 10.1016/j.oraloncology.2014.09.005 PMID: 25255960
- Kowalski, L.P.; Carvalho, A.L. Natural history of untreated head and neck cancer. Eur. J. Cancer, 2000, 36(8), 1032-1037. doi: 10.1016/S0959-8049(00)00054-X PMID: 10885608
- Campagna, R.; Pozzi, V.; Salvucci, A.; Togni, L.; Mascitti, M.; Sartini, D.; Salvolini, E.; Santarelli, A.; Lo Muzio, L.; Emanuelli, M. Paraoxonase-2 expression in oral squamous cell carcinoma. Hum. Cell, 2023, 36(3), 1211-1213. doi: 10.1007/s13577-023-00875-w PMID: 36774414
- Sarode, G.; Maniyar, N.; Sarode, S.C.; Jafer, M.; Patil, S.; Awan, K.H. Epidemiologic aspects of oral cancer. Dis. Mon., 2020, 66(12), 100988. doi: 10.1016/j.disamonth.2020.100988 PMID: 32605720
- Chamoli, A.; Gosavi, A.S.; Shirwadkar, U.P.; Wangdale, K.V.; Behera, S.K.; Kurrey, N.K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral. Oncol., 2021, 121, 105451. doi: 10.1016/j.oraloncology.2021.105451
- Campagna, R.; Belloni, A.; Pozzi, V.; Salvucci, A.; Notarstefano, V.; Togni, L.; Mascitti, M.; Sartini, D.; Giorgini, E.; Salvolini, E.; Santarelli, A.; Lo Muzio, L.; Emanuelli, M. Role played by paraoxonase-2 enzyme in cell viability, proliferation and sensitivity to chemotherapy of oral squamous cell carcinoma cell lines. Int. J. Mol. Sci., 2022, 24(1), 338. doi: 10.3390/ijms24010338 PMID: 36613780
- Wittekindt, C.; Wagner, S.; Sharma, S.J.; Wurdemann, N.; Knuth, J.; Reder, H.; Klussmann, J.P. HPV : A different view on head and neck cancer. Laryngorhinootologie, 2018, 97(S01), S48-S113. doi: 10.1055/s-0043-121596
- Javadi, P.; Sharma, A.; Zahnd, W.E.; Jenkins, W.D. Evolving disparities in the epidemiology of oral cavity and oropharyngeal cancers. Can. Caus. Cont., 2017, 28(6), 635-645. doi: 10.1007/s10552-017-0889-8 PMID: 28391376
- Mehrotra, R.; Gupta, D.K. Exciting new advances in oral cancer diagnosis: Avenues to early detection. Head. Neck. Oncol., 2011, 3, 33. doi: 10.1186/1758-3284-3-33
- Sartini, D.; Campagna, R.; Lucarini, G.; Pompei, V.; Salvolini, E.; Mattioli-Belmonte, M.; Molinelli, E.; Brisigotti, V.; Campanati, A.; Bacchetti, T.; Ferretti, G.; Offidani, A.; Emanuelli, M. Differential immunohistochemical expression of paraoxonase-2 in actinic keratosis and squamous cell carcinoma. Hum. Cell, 2021, 34(6), 1929-1931. doi: 10.1007/s13577-021-00581-5 PMID: 34302630
- Belcher, R.; Hayes, K.; Fedewa, S.; Chen, A.Y. Current treatment of head and neck squamous cell cancer. J. Surg. Oncol., 2014, 110(5), 551-574. doi: 10.1002/jso.23724 PMID: 25053506
- Pandey, M.; Kannepali, K.K.; Dixit, R.; Kumar, M. Effect of neoadjuvant chemotherapy and its correlation with HPV status, EGFR, Her-2-neu, and GADD45 expression in oral squamous cell carcinoma. World J. Surg. Oncol., 2018, 16(1), 20. doi: 10.1186/s12957-018-1308-7 PMID: 29386013
- Tossetta, G.; Fantone, S.; Goteri, G.; Giannubilo, S.R.; Ciavattini, A.; Marzioni, D. The Role of NQO1 in ovarian cancer. Int. J. Mol. Sci., 2023, 24(9), 7839. doi: 10.3390/ijms24097839 PMID: 37175546
- Campagna, R.; Pozzi, V.; Giorgini, S.; Morichetti, D.; Goteri, G.; Sartini, D.; Serritelli, E.N.; Emanuelli, M. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance. Hum. Cell, 2023, 36(3), 1108-1119. doi: 10.1007/s13577-023-00892-9 PMID: 36897549
- Tossetta, G. Metformin improves ovarian cancer sensitivity to paclitaxel and platinum-based drugs: A review of in vitro findings. Int. J. Mol. Sci., 2022, 23(21), 12893. doi: 10.3390/ijms232112893 PMID: 36361682
- Tossetta, G.; Marzioni, D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur. J. Pharmacol., 2023, 941, 175503. doi: 10.1016/j.ejphar.2023.175503
- Schomberg, J. Identification of targetable pathways in oral cancer patients via random forest and chemical informatics. Cancer Inform., 2019, 28, 1176935119889911. doi: 10.1177/1176935119889911
- Huang, S.H.; O Sullivan, B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal, 2013, 18(2), e233-e240. doi: 10.4317/medoral.18772 PMID: 23385513
- Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer., 2011, 10, 12. doi: 10.1186/1476-4598-10-12
- Alsharairi, N.A. Quercetin derivatives as potential therapeutic agents: An updated perspective on the treatment of nicotine-induced non-small cell lung cancer. Int. J. Mol. Sci., 2023, 24(20), 15208. doi: 10.3390/ijms242015208 PMID: 37894889
- Tossetta, G.; Fantone, S.; Gesuita, R.; Goteri, G.; Senzacqua, M.; Marcheggiani, F.; Tiano, L.; Marzioni, D.; Mazzucchelli, R. Ciliary neurotrophic factor modulates multiple downstream signaling pathways in prostate cancer inhibiting cell invasiveness. Cancers, 2022, 14(23), 5917. doi: 10.3390/cancers14235917 PMID: 36497399
- Guo, Y.; Li, Z.; Chen, F.; Chai, Y. Polyphenols in oral health: Homeostasis maintenance, disease prevention, and therapeutic applications. Nutrients, 2023, 15(20), 4384. doi: 10.3390/nu15204384 PMID: 37892459
- Tossetta, G.; Fantone, S.; Licini, C.; Marzioni, D.; Mattioli-Belmonte, M. The multifaced role of HtrA1 in the development of joint and skeletal disorders. Bone, 2022, 157, 116350. doi: 10.1016/j.bone.2022.116350
- Tossetta, G.; Marzioni, D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol. Res., 2022, 183, 106365. doi: 10.1016/j.phrs.2022.106365
- Bakun, P.; Mlynarczyk, D.T.; Koczorowski, T.; Cerbin-Koczorowska, M.; Piwowarczyk, L.; Kolasinski, E.; Stawny, M.; Kuzminska, J.; Jelinska, A.; Goslinski, T. Tea-break with epigallocatechin gallate derivatives : Powerful polyphenols of great potential for medicine. Eur. J. Med. Chem., 2023, 261, 115820. doi: 10.1016/j.ejmech.2023.115820
- Niedzwiecki, A.; Roomi, M.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552. doi: 10.3390/nu8090552 PMID: 27618095
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930. doi: 10.3390/molecules24162930 PMID: 31412624
- Yuandani, I.; Rohani, A.S.; Sumantri, I.B. Immunomodulatory effects and mechanisms of Curcuma Species and their bioactive compounds: A review. Front. Pharmacol., 2021, 12, 643119. doi: 10.3389/fphar.2021.643119
- Sutarsi Jati, P.T.; Wiradiestia, D.; Altway, A.; Winardi, S.; Wahyudiono Machmudah, S. Extraction process optimization of curcumin from Curcuma xanthorrhiza Roxb. with supercritical carbon dioxide using ethanol as a cosolvent. ACS Omega, 2024, 9(1), 1251-1264. doi: 10.1021/acsomega.3c07497 PMID: 38239285
- Cai, J.; Qiao, Y.; Chen, L.; Lu, Y.; Zheng, D. Regulation of the notch signaling pathway by natural products for cancer therapy. J. Nutr. Biochem., 2023, 109483. doi: 10.1016/j.jnutbio.2023.109483 PMID: 37848105
- Mundekkad, D.; Cho, W.C. Applications of curcumin and its nanoforms in the treatment of cancer. Pharmaceutics, 2023, 15(9), 2223. doi: 10.3390/pharmaceutics15092223 PMID: 37765192
- Zhu, X.; Quan, Y.Y.; Yin, Z.J.; Li, M.; Wang, T.; Zheng, L.Y.; Feng, S.Q.; Zhao, J.N.; Li, L. Sources, morphology, phytochemistry, pharmacology of Curcumae Longae Rhizoma, Curcumae Radix, and Curcumae Rhizoma : A review of the literature. Front. Pharmacol., 2023, 14, 1229963. doi: 10.3389/fphar.2023.1229963
- Tossetta, G.; Fantone, S.; Giannubilo, S.R.; Marzioni, D. The multifaced actions of curcumin in pregnancy outcome. Antioxidants, 2021, 10(1), 126. doi: 10.3390/antiox10010126 PMID: 33477354
- Passos, C.L.A.; Polinati, R.M.; Ferreira, C.; dos Santos, N.A.N.; Lima, D.G.V.; da Silva, J.L.; Fialho, E. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells. Sci. Rep., 2023, 13(1), 13446. doi: 10.1038/s41598-023-40535-5 PMID: 37596331
- Iweala, E.J.; Oluwapelumi, A.E.; Dania, O.E.; Ugbogu, E.A. Bioactive phytoconstituents and their therapeutic potentials in the treatment of haematological cancers: A review. Life, 2023, 13(7), 1422. doi: 10.3390/life13071422 PMID: 37511797
- Luthra, P.M.; Lal, N. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur. J. Med. Chem., 2016, 109, 23-35. doi: 10.1016/j.ejmech.2015.11.049
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637. doi: 10.1021/acs.jmedchem.6b00975 PMID: 28074653
- Ming, T.; Tao, Q.; Tang, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Xu, H. Curcumin: An epigenetic regulator and its application in cancer. Biomed. Pharmacother., 2022, 156, 113956. doi: 10.1016/j.biopha.2022.113956
- Moetlediwa, M.T.; Ramashia, R.; Pheiffer, C.; Titinchi, S.J.J.; Mazibuko-Mbeje, S.E.; Jack, B.U. Therapeutic effects of curcumin derivatives against obesity and associated metabolic complications: A Review of in vitro and in vivo Studies. Int. J. Mol. Sci., 2023, 24(18), 14366. doi: 10.3390/ijms241814366 PMID: 37762669
- Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; De Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 2015, 10(5), 1615-1623. doi: 10.3892/etm.2015.2749 PMID: 26640527
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809. doi: 10.1016/j.bcp.2007.08.016 PMID: 17900536
- Xu, C.; Wang, M.; Guo, W.; Sun, W.; Liu, Y. Curcumin in osteosarcoma therapy: Combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy. Front. Oncol., 2021, 11, 672490. doi: 10.3389/fonc.2021.672490
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818. doi: 10.1021/mp700113r PMID: 17999464
- Tossetta, G.; Fantone, S.; Montanari, E.; Marzioni, D.; Goteri, G. Role of NRF2 in ovarian cancer. Antioxidants, 2022, 11(4), 663. doi: 10.3390/antiox11040663 PMID: 35453348
- Tossetta, G.; Fantone, S.; Marzioni, D.; Mazzucchelli, R. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer. Cancers, 2023, 15(11), 3037. doi: 10.3390/cancers15113037 PMID: 37296999
- Emanuelli, M.; Sartini, D.; Molinelli, E.; Campagna, R.; Pozzi, V.; Salvolini, E.; Simonetti, O.; Campanati, A.; Offidani, A. The double-edged sword of oxidative stress in skin damage and melanoma: From physiopathology to therapeutical approaches. Antioxidants, 2022, 11(4), 612. doi: 10.3390/antiox11040612 PMID: 35453297
- Campagna, R.; Mateuszuk, Ł.; Wojnar-Lason, K.; Kaczara, P.; Tworzydło, A.; Kij, A.; Bujok, R.; Mlynarski, J.; Wang, Y.; Sartini, D.; Emanuelli, M.; Chlopicki, S. Nicotinamide N-methyltransferase in endothelium protects against oxidant stress-induced endothelial injury. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(10), 119082. doi: 10.1016/j.bbamcr.2021.119082 PMID: 34153425
- Mourtas, S.; Lazar, A.N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S.G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem., 2014, 80, 175-183. doi: 10.1016/j.ejmech.2014.04.050
- Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1303-1312. doi: 10.1016/S0891-5849(00)00294-X PMID: 10889462
- Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One, 2019, 14(5), e0216711. doi: 10.1371/journal.pone.0216711 PMID: 31112588
- Sun, M.; Liu, N.; Sun, J.; Li, X.; Wang, H.; Zhang, W.; Xie, Q.; Wang, M. Curcumin regulates anti-inflammatory responses by AXL/JAK2/STAT3 signaling pathway in experimental autoimmune encephalomyelitis. Neurosci. Lett., 2022, 787, 136821. doi: 10.1016/j.neulet.2022.136821
- Aggarwal, S.; Takada, Y.; Singh, S.; Myers, J.N.; Aggarwal, B.B. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor‐κB signaling. Int. J. Cancer, 2004, 111(5), 679-692. doi: 10.1002/ijc.20333 PMID: 15252836
- Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347. doi: 10.2174/138945011794815356 PMID: 20955148
- Kuhad, A.; Chopra, K. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences. Eur. J. Pharmacol., 2007, 576(1-3), 34-42. doi: 10.1016/j.ejphar.2007.08.001 PMID: 17822693
- Subbaramaiah, K.; Dannenberg, A.J. Cyclooxygenase 2: A molecular target for cancer prevention and treatment. Trends Pharmacol. Sci., 2003, 24(2), 96-102. doi: 10.1016/S0165-6147(02)00043-3 PMID: 12559775
- Besasie, B.D.; Saha, A.; DiGiovanni, J.; Liss, M.A. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia, 2023, 91(1), 90-106. doi: 10.1177/03915603231202304 PMID: 37776274
- Marzioni, D.; Mazzucchelli, R.; Fantone, S.; Tossetta, G. NRF2 modulation in TRAMP mice: An in vivo model of prostate cancer. Mol. Biol. Rep., 2022, 50(1), 873-881. doi: 10.1007/s11033-022-08052-2 PMID: 36335520
- Saharkhiz, S.; Zarepour, A.; Nasri, N.; Cordani, M.; Zarrabi, A. A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy. Eur. J. Pharm. Sci., 2023, 50(1), 191-192. doi: 10.1016/j.ejps.2023.106600
- Liu, E.; Wu, J.; Cao, W.; Zhang, J.; Liu, W.; Jiang, X.; Zhang, X. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J. Neurooncol., 2007, 85(3), 263-270. doi: 10.1007/s11060-007-9421-4 PMID: 17594054
- Rinaldi, A.L.; Morse, M.A.; Fields, H.W.; Rothas, D.A.; Pei, P.; Rodrigo, K.A.; Renner, R.J.; Mallery, S.R. Curcumin activates the aryl hydrocarbon receptor yet significantly inhibits (-)-benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivation in oral squamous cell carcinoma cells and oral mucosa. Cancer Res., 2002, 62(19), 5451-5456. PMID: 12359752
- Chen, A.; Xu, J. Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288(3), G447-G456. doi: 10.1152/ajpgi.00209.2004 PMID: 15486348
- Khojaste, E.; Ahmadizadeh, C. Catechin metabolites along with curcumin inhibit proliferation and induce apoptosis in cervical cancer cells by regulating VEGF expression In-vitro. Nutr. Cancer, 2022, 74(3), 1048-1057. doi: 10.1080/01635581.2021.1936082 PMID: 34121550
- Bae, J.H.; Park, J.W.; Kwon, T.K. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem. Biophys. Res. Commun., 2003, 303(4), 1073-1079. doi: 10.1016/S0006-291X(03)00479-0 PMID: 12684045
- Memarzia, A.; Khazdair, M.R.; Behrouz, S.; Gholamnezhad, Z.; Jafarnezhad, M.; Saadat, S.; Boskabady, M.H. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors, 2021, 47(3), 311-350. doi: 10.1002/biof.1716 PMID: 33606322
- Jiang, M.; Gan, Y.; Li, Y.; Qi, Y.; Zhou, Z.; Fang, X.; Jiao, J.; Han, X.; Gao, W.; Zhao, J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int. J. Biol. Macromol., 2023, 2540, 126153. doi: 10.1016/j.ijbiomac.2023.126153
- Lao, C.D.; Ruffin, M.T.t.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10. doi: 10.1186/1472-6882-6-10
- Tabanelli, R.; Brogi, S.; Calderone, V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics, 2021, 13(10), 1715. doi: 10.3390/pharmaceutics13101715 PMID: 34684008
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762. doi: 10.1002/jsfa.11372 PMID: 34143894
- Hsu, K.Y.; Ho, C.T.; Pan, M.H. The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies. Yao Wu Shi Pin Fen Xi, 2023, 31(2), 194-211. doi: 10.38212/2224-6614.3454 PMID: 37335161
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213. doi: 10.3390/molecules20059183 PMID: 26007179
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug. Des. Devel. Ther., 2021, 15, 4503-4525. doi: 10.2147/DDDT.S327378
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients, 2019, 11(8), 1837. doi: 10.3390/nu11081837 PMID: 31398884
- Manghani, C.; Gupta, A.; Tripathi, V.; Rani, V. Cardioprotective potential of curcumin against norepinephrine‐induced cell death: A microscopic study. J. Microsc., 2017, 265(2), 232-244. doi: 10.1111/jmi.12492 PMID: 27779739
- Abadi, A.J.; Mirzaei, S.; Mahabady, M.K.; Hashemi, F.; Zabolian, A.; Hashemi, F.; Raee, P.; Aghamiri, S.; Ashrafizadeh, M.; Aref, A.R.; Hamblin, M.R.; Hushmandi, K.; Zarrabi, A.; Sethi, G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res., 2022, 36(1), 189-213. doi: 10.1002/ptr.7305 PMID: 34697839
- Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153. PMID: 19594223
- Plummer, S.M.; Holloway, K.A.; Manson, M.M.; Munks, R.J.L.; Kaptein, A.; Farrow, S.; Howells, L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene, 1999, 18(44), 6013-6020. doi: 10.1038/sj.onc.1202980 PMID: 10557090
- Termini, D.; Den Hartogh, D.J.; Jaglanian, A.; Tsiani, E. Curcumin against prostate cancer: Current evidence. Biomolecules, 2020, 10(11), 1536. doi: 10.3390/biom10111536 PMID: 33182828
- Wan Mohd Tajuddin, W.N.B.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients, 2019, 11(12), 2989. doi: 10.3390/nu11122989 PMID: 31817718
- Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58, 152740. doi: 10.1016/j.phymed.2018.11.001
- Nagaraju, G.P.; Benton, L.; Bethi, S.R.; Shoji, M.; El-Rayes, B.F. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int. J. Cancer, 2019, 145(1), 10-19. doi: 10.1002/ijc.31867 PMID: 30226272
- Almalki, Z.; Algregri, M.; Alhosin, M.; Alkhaled, M.; Damiati, S.; Zamzami, M.A. In vitro cytotoxicity of curcuminoids against head and neck cancer HNO97 cell line. Braz. J. Biol., 2021, 83, e248708.
- Zhou, H.; Ning, Y.; Zeng, G.; Zhou, C.; Ding, X. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT. Oncol. Rep., 2021, 45(4), 11. doi: 10.3892/or.2021.7962 PMID: 33649826
- Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773. doi: 10.1093/carcin/bgm123 PMID: 17522064
- Simon, A.; Allais, D.P.; Duroux, J.L.; Basly, J.P.; Durand-Fontanier, S.; Delage, C. Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure–activity relationships. Cancer Lett., 1998, 129(1), 111-116. doi: 10.1016/S0304-3835(98)00092-5 PMID: 9714342
- Chearwae, W.; Anuchapreeda, S.; Nandigama, K.; Ambudkar, S.V.; Limtrakul, P. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem. Pharmacol., 2004, 68(10), 2043-2052. doi: 10.1016/j.bcp.2004.07.009 PMID: 15476675
- Bonté, F.; Noel-Hudson, M.S.; Wepierre, J.; Meybeck, A. Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress. Planta Med., 1997, 63(3), 265-266. doi: 10.1055/s-2006-957669 PMID: 9225611
- Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611. doi: 10.1016/j.bcp.2008.08.008 PMID: 18775680
- Noureddin, S.A.; El-Shishtawy, R.M.; Al-Footy, K.O. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur. J. Med. Chem., 2019, 182, 111631. doi: 10.1016/j.ejmech.2019.111631
- Zhao, C.; Zhou, X.; Cao, Z.; Ye, L.; Cao, Y.; Pan, J. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms. Phytomedicine, 2023, 119, 154986. doi: 10.1016/j.phymed.2023.154986
- Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033. doi: 10.3390/ijms20051033 PMID: 30818786
- Lu, K.H.; Lu, P.W.A.; Lu, E.W.H.; Lin, C.W.; Yang, S.F. Curcumin and its analogs and carriers: Potential therapeutic strategies for human osteosarcoma. Int. J. Biol. Sci., 2023, 19(4), 1241-1265. doi: 10.7150/ijbs.80590 PMID: 36923933
- Dende, C.; Meena, J.; Nagarajan, P.; Nagaraj, V.A.; Panda, A.K.; Padmanaban, G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria. Sci. Rep., 2017, 7(1), 10062. doi: 10.1038/s41598-017-10672-9 PMID: 28855623
- Amano, C.; Minematsu, H.; Fujita, K.; Iwashita, S.; Adachi, M.; Igarashi, K.; Hinuma, S. Nanoparticles containing curcumin useful for suppressing macrophages in vivo in mice. PLoS One, 2015, 10(9), e0137207. doi: 10.1371/journal.pone.0137207 PMID: 26361331
- Lee, W.H.; Loo, C.Y.; Young, P.M.; Traini, D.; Mason, R.S.; Rohanizadeh, R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin. Drug Deliv., 2014, 11(8), 1183-1201. doi: 10.1517/17425247.2014.916686 PMID: 24857605
- Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250. doi: 10.1039/C1NR11271F PMID: 22080352
- Hatefi, A.; Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Control. Release, 2002, 80(1-3), 9-28. doi: 10.1016/S0168-3659(02)00008-1 PMID: 11943384
- Altunbas, A.; Lee, S.J.; Rajasekaran, S.A.; Schneider, J.P.; Pochan, D.J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 2011, 32(25), 5906-5914. doi: 10.1016/j.biomaterials.2011.04.069 PMID: 21601921
- Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human serum albumin nanoparticles for use in cancer drug delivery: Process optimization and in vitro characterization. Nanomaterials, 2016, 6(6), 116. doi: 10.3390/nano6060116 PMID: 28335244
- Song, W.; Muthana, M.; Mukherjee, J.; Falconer, R.J.; Biggs, C.A.; Zhao, X. Magnetic-silk core–shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater. Sci. Eng., 2017, 3(6), 1027-1038. doi: 10.1021/acsbiomaterials.7b00153 PMID: 33429579
- Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B Biointerfaces, 2010, 79(1), 113-125. doi: 10.1016/j.colsurfb.2010.03.039 PMID: 20456930
- Bano, N.; Yadav, M.; Das, B.C. Differential inhibitory effects of curcumin between HPV+ve and HPV-ve Oral cancer stem cells. Front Oncol, 2018, 8, 412. doi: 10.3389/fonc.2018.00412
- Mishra, A.; Kumar, R.; Tyagi, A.; Kohaar, I.; Hedau, S.; Bharti, A.C.; Sarker, S.; Dey, D.; Saluja, D.; Das, B. Curcumin modulates cellular AP-1, NF-κB, and HPV16 E6 proteins in oral cancer. Ecancer. Med. Sci., 2015, 9, 525. doi: 10.3332/ecancer.2015.525
- Pozzi, V.; Salvolini, E.; Lucarini, G.; Salvucci, A.; Campagna, R.; Rubini, C.; Sartini, D.; Emanuelli, M. Cancer stem cell enrichment is associated with enhancement of nicotinamide N‐methyltransferase expression. IUBMB Life, 2020, 72(7), 1415-1425. doi: 10.1002/iub.2265 PMID: 32150326
- Pajonk, F.; Vlashi, E.; McBride, W.H. Radiation resistance of cancer stem cells: The 4 R’s of radiobiology revisited. Stem Cells, 2010, 28(4), 639-648. doi: 10.1002/stem.318 PMID: 20135685
- Liu, C.; Kelnar, K.; Liu, B.; Chen, X.; Calhoun-Davis, T.; Li, H.; Patrawala, L.; Yan, H.; Jeter, C.; Honorio, S.; Wiggins, J.F.; Bader, A.G.; Fagin, R.; Brown, D.; Tang, D.G. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med., 2011, 17(2), 211-215. doi: 10.1038/nm.2284 PMID: 21240262
- Lelli, D.; Pedone, C.; Majeed, M.; Sahebkar, A. Curcumin and lung cancer: The role of microRNAs. Curr. Pharm. Des., 2017, 23(23), 3440-3444. doi: 10.2174/1381612823666170109144818 PMID: 28067164
- Alam, M.; Kashyap, T.; Pramanik, K.K.; Singh, A.K.; Nagini, S.; Mishra, R. The elevated activation of NFκB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance. Clin. Oral Investig., 2017, 21(9), 2721-2731. doi: 10.1007/s00784-017-2074-6 PMID: 28233171
- Liu, T.; Long, T.; Li, H. Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway. Exp. Ther. Med., 2021, 21(3), 202. doi: 10.3892/etm.2021.9635 PMID: 33500696
- Hung, C.M.; Su, Y.H.; Lin, H.Y.; Lin, J.N.; Liu, L.C.; Ho, C.T.; Way, T.D. Demethoxycurcumin modulates prostate cancer cell proliferation via AMPK-induced down-regulation of HSP70 and EGFR. J. Agric. Food Chem., 2012, 60(34), 8427-8434. doi: 10.1021/jf302754w PMID: 22849866
- Wu, J.; Patmore, D.M.; Jousma, E.; Eaves, D.W.; Breving, K.; Patel, A.V.; Schwartz, E.B.; Fuchs, J.R.; Cripe, T.P.; Stemmer-Rachamimov, A.O.; Ratner, N. EGFR–STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors. Oncogene, 2014, 33(2), 173-180. doi: 10.1038/onc.2012.579 PMID: 23318430
- Zhen, L.; Fan, D.; Yi, X.; Cao, X.; Chen, D.; Wang, L. Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int. J. Clin. Exp. Pathol., 2014, 7(10), 6438-6446. PMID: 25400722
- Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890. doi: 10.1016/j.cell.2009.11.007 PMID: 19945376
- Iwatsuki, M.; Mimori, K.; Yokobori, T.; Ishi, H.; Beppu, T.; Nakamori, S.; Baba, H.; Mori, M. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci., 2010, 101(2), 293-299. doi: 10.1111/j.1349-7006.2009.01419.x PMID: 19961486
- Lee, A.Y.L.; Fan, C.C.; Chen, Y.A.; Cheng, C.W.; Sung, Y.J.; Hsu, C.P.; Kao, T.Y. Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway. Integr. Cancer Ther., 2015, 14(5), 484-490. doi: 10.1177/1534735415588930 PMID: 26036622
- Tossetta, G.; Fantone, S.; Giannubilo, S.R.; Marinelli Busilacchi, E.; Ciavattini, A.; Castellucci, M.; Di Simone, N.; Mattioli-Belmonte, M.; Marzioni, D. Pre‐eclampsia onset and SPARC: A possible involvement in placenta development. J. Cell. Physiol., 2019, 234(5), 6091-6098. doi: 10.1002/jcp.27344 PMID: 30426491
- Sarrand, J.; Soyfoo, M.S. Involvement of epithelial-mesenchymal transition (EMT) in autoimmune diseases. Int. J. Mol. Sci., 2023, 24(19), 14481. doi: 10.3390/ijms241914481 PMID: 37833928
- Akhurst, R.J. From shape shifting embryonic cells to oncology: The fascinating history of epithelial mesenchymal transition. Semin. Cancer. Biol., 2023, 96, 100-114. doi: 10.1016/j.semcancer.2023.10.003
- Acloque, H.; Adams, M.S.; Fishwick, K.; Bronner-Fraser, M.; Nieto, M.A. Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease. J. Clin. Invest., 2009, 119(6), 1438-1449. doi: 10.1172/JCI38019 PMID: 19487820
- Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2002, 2(6), 442-454. doi: 10.1038/nrc822 PMID: 12189386
- Krisanaprakornkit, S.; Iamaroon, A. Epithelial-mesenchymal transition in oral squamous cell carcinoma. ISRN Oncol., 2012, 2012, 681469. doi: 10.5402/2012/681469
- Campagna, R.; Cecati, M.; Pozzi, V.; Fumarola, S.; Pompei, V.; Milanese, G.; Galosi, A.B.; Sartini, D.; Emanuelli, M. Involvement of transforming growth factor beta 1 in the transcriptional regulation of nicotinamide N-methyltransferase in clear cell renal cell carcinoma. Cell. Mol. Biol., 2018, 64(7), 51-55. doi: 10.14715/cmb/2018.64.7.9 PMID: 29974846
- Huang, X.; Gan, G.; Wang, X.; Xu, T.; Xie, W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy, 2019, 15(7), 1258-1279. doi: 10.1080/15548627.2019.1580105 PMID: 30786811
- Ohnishi, Y.; Sakamoto, T.; Zhengguang, L.; Yasui, H.; Hamada, H.; Kubo, H.; Nakajima, M. Curcumin inhibits epithelial‑mesenchymal transition in oral cancer cells via c‑Met blockade. Oncol. Lett., 2020, 19(6), 4177-4182. doi: 10.3892/ol.2020.11523 PMID: 32391111
- Chen, H.W.; Huang, H.C. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br. J. Pharmacol., 1998, 124(6), 1029-1040. doi: 10.1038/sj.bjp.0701914 PMID: 9720770
- Sahin, K.; Orhan, C.; Tuzcu, M.; Sahin, N.; Tastan, H.; Özercan, İ.H.; Güler, O.; Kahraman, N.; Kucuk, O.; Ozpolat, B. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prev. Res., 2018, 11(1), 59-67. doi: 10.1158/1940-6207.CAPR-16-0289 PMID: 29089332
- Díaz Osterman, C.J.; Gonda, A.; Stiff, T.; Sigaran, U.; Asuncion Valenzuela, M.M.; Ferguson Bennit, H.R.; Moyron, R.B.; Khan, S.; Wall, N.R. Curcumin induces pancreatic adenocarcinoma cell death via reduction of the inhibitors of apoptosis. Pancreas, 2016, 45(1), 101-109. doi: 10.1097/MPA.0000000000000411 PMID: 26348467
- Chien, M.H.; Yang, W.E.; Yang, Y.C.; Ku, C.C.; Lee, W.J.; Tsai, M.Y.; Lin, C.W.; Yang, S.F. Dual targeting of the p38 MAPK-HO-1 Axis and cIAP1/XIAP by demethoxycurcumin triggers caspase-mediated apoptotic cell death in oral squamous cell carcinoma cells. Cancers, 2020, 12(3), 703. doi: 10.3390/cancers12030703 PMID: 32188144
- Qi, S.; Mogi, S.; Tsuda, H.; Tanaka, Y.; Kozaki, K.; Imoto, I.; Inazawa, J.; Hasegawa, S.; Omura, K. Expression of cIAP-1 correlates with nodal metastasis in squamous cell carcinoma of the tongue. Int. J. Oral Maxillofac. Surg., 2008, 37(11), 1047-1053. doi: 10.1016/j.ijom.2008.06.004 PMID: 18621506
- Nagata, M.; Nakayama, H.; Tanaka, T.; Yoshida, R.; Yoshitake, Y.; Fukuma, D.; Kawahara, K.; Nakagawa, Y.; Ota, K.; Hiraki, A.; Shinohara, M. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br. J. Cancer, 2011, 105(9), 1322-1330. doi: 10.1038/bjc.2011.387 PMID: 21952624
- Tanaka, T.; Nakayama, H.; Yoshitake, Y.; Irie, A.; Nagata, M.; Kawahara, K.; Takamune, Y.; Yoshida, R.; Nakagawa, Y.; Ogi, H.; Shinriki, S.; Ota, K.; Hiraki, A.; Ikebe, T.; Nishimura, Y.; Shinohara, M. Selective inhibition of nuclear factor‐κB by nuclear factor‐κB essential modulator‐binding domain peptide suppresses the metastasis of highly metastatic oral squamous cell carcinoma. Cancer Sci., 2012, 103(3), 455-463. doi: 10.1111/j.1349-7006.2011.02174.x PMID: 22136381
- Tanimoto, T.; Tsuda, H.; Imazeki, N.; Ohno, Y.; Imoto, I.; Inazawa, J.; Matsubara, O. Nuclear expression of cIAP-1, an apoptosis inhibiting protein, predicts lymph node metastasis and poor patient prognosis in head and neck squamous cell carcinomas. Cancer Lett., 2005, 224(1), 141-151. doi: 10.1016/j.canlet.2004.11.049 PMID: 15911110
- Yanagawa, T.; Omura, K.; Harada, H.; Nakaso, K.; Iwasa, S.; Koyama, Y.; Onizawa, K.; Yusa, H.; Yoshida, H. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol., 2004, 40(1), 21-27. doi: 10.1016/S1368-8375(03)00128-3 PMID: 14662411
- Markopoulos, A.K. Current aspects on oral squamous cell carcinoma. Open Dent J., 2012, 6, 126-130. doi: 10.2174/1874210601206010126
- Tanaka, T.; Ishigamori, R. Understanding carcinogenesis for fighting oral cancer. J. Oncol., 2011, 2011, 603740. doi: 10.1155/2011/603740
- Maulina, T.; Widayanti, R.; Hardianto, A.; Sjamsudin, E.; Pontjo, B.; Yusuf, H.Y. The usage of curcumin as chemopreventive agent for oral squamous cell carcinoma: An experimental study on sprague-dawley rat. Integr Cancer Ther, 2019, 2019, 1534735418822094. doi: 10.1177/1534735418822094
- Hsieh, M.T.; Chang, L.C.; Hung, H.Y.; Lin, H.Y.; Shih, M.H.; Tsai, C.H.; Kuo, S.C.; Lee, K.H. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo. Eur J Med Chem, 2017, 131, 141-151. doi: 10.1016/j.ejmech.2017.03.006
- Chiu, Y.J.; Tsai, F.J.; Bau, D.T.; Chang, L.C.; Hsieh, M.T.; Lu, C.C.; Kuo, S.C.; Yang, J.S. Next‑generation sequencing analysis reveals that MTH‑3, a novel curcuminoid derivative, suppresses the invasion of MDA‑MB‑231 triple‑negative breast adenocarcinoma cells. Oncol. Rep., 2021, 46(1), 133. doi: 10.3892/or.2021.8084 PMID: 34013378
- Tsai, S.C.; Yang, J.S.; Lu, C.C.; Tsai, F.J.; Chiu, Y.J.; Kuo, S.C. MTH-3 sensitizes oral cancer cells to cisplatin via regulating TFEB. J. Pharm. Pharmacol., 2022, 74(9), 1261-1273. doi: 10.1093/jpp/rgac056 PMID: 35880728
- Selvendiran, K.; Ahmed, S.; Dayton, A.; Kuppusamy, M.L.; Rivera, B.K.; Kálai, T.; Hideg, K.; Kuppusamy, P. HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer Biol. Ther., 2011, 12(9), 837-845. doi: 10.4161/cbt.12.9.17713 PMID: 21885917
- Dayton, A.; Selvendiran, K.; Kuppusamy, M.L.; Rivera, B.K.; Meduru, S.; Kálai, T.; Hideg, K.; Kuppusamy, P. Cellular uptake, retention and bioabsorption of HO-3867, a fluorinated curcumin analog with potential antitumor properties. Cancer Biol. Ther., 2010, 10(10), 1027-1032. doi: 10.4161/cbt.10.10.13250 PMID: 20798598
- Madan, E.; Parker, T.M.; Bauer, M.R.; Dhiman, A.; Pelham, C.J.; Nagane, M.; Kuppusamy, M.L.; Holmes, M.; Holmes, T.R.; Shaik, K.; Shee, K.; Kiparoidze, S.; Smith, S.D.; Park, Y.S.A.; Gomm, J.J.; Jones, L.J.; Tomás, A.R.; Cunha, A.C.; Selvendiran, K.; Hansen, L.A.; Fersht, A.R.; Hideg, K.; Gogna, R.; Kuppusamy, P. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. J. Biol. Chem., 2018, 293(12), 4262-4276. doi: 10.1074/jbc.RA117.000950 PMID: 29382728
- Chen, C.W.; Hsieh, M.J.; Ju, P.C.; Hsieh, Y.H.; Su, C.W.; Chen, Y.L.; Yang, S.F.; Lin, C.W. Curcumin analog HO‐3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells. J. Cell. Mol. Med., 2022, 26(8), 2273-2284. doi: 10.1111/jcmm.17248 PMID: 35191177
- He, Y.; Li, W.; Hu, G.; Sun, H.; Kong, Q. Bioactivities of EF24, a novel curcumin analog: A review. Front Oncol, 2018, 8, 614. doi: 10.3389/fonc.2018.00614
- Hoffmann, M.; Saleh-Ebrahimi, L.; Zwicker, F.; Haering, P.; Schwahofer, A.; Debus, J.; Huber, P.E.; Roeder, F. Long term results of postoperative Intensity-Modulated Radiation Therapy (IMRT) in the treatment of Squamous Cell Carcinoma (SCC) located in the oropharynx or oral cavity. Radiat. Oncol., 2015, 10, 451. doi: 10.1186/s13014-015-0561-y
- Santabarbara, G.; Maione, P.; Rossi, A.; Gridelli, C. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opin. Pharmacother., 2016, 17(4), 561-570. doi: 10.1517/14656566.2016.1122757 PMID: 26581586
- Kim, C.D.; Cha, J.D.; Li, S.; Cha, I.H. The mechanism of acacetin-induced apoptosis on oral squamous cell carcinoma. Arch. Oral Biol., 2015, 60(9), 1283-1298. doi: 10.1016/j.archoralbio.2015.05.009 PMID: 26099663
- Iwayama, H.; Sakamoto, T.; Nawa, A.; Ueda, N. Crosstalk between smad and mitogen-activated protein kinases for the regulation of apoptosis in cyclosporine a induced renal tubular injury. Nephron Extra, 2011, 1(1), 178-189. doi: 10.1159/000333014 PMID: 22470391
- Lin, C.; Tu, C.; Ma, Y.; Ye, P.; Shao, X.; Yang, Z.; Fang, Y. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma. Mol. Med. Rep., 2017, 16(4), 4927-4933. doi: 10.3892/mmr.2017.7189 PMID: 28791378
- Shimazu, K.; Inoue, M.; Sugiyama, S.; Fukuda, K.; Yoshida, T.; Taguchi, D.; Uehara, Y.; Kuriyama, S.; Tanaka, M.; Miura, M.; Nanjyo, H.; Iwabuchi, Y.; Shibata, H. Curcumin analog, GO ‐Y078, overcomes resistance to tumor angiogenesis inhibitors. Cancer Sci., 2018, 109(10), 3285-3293. doi: 10.1111/cas.13741 PMID: 30024080
- Chien, M.H.; Shih, P.C.; Ding, Y.F.; Chen, L.H.; Hsieh, F.K.; Tsai, M.Y.; Li, P.Y.; Lin, C.W.; Yang, S.F. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity. Expert Opin. Ther. Targets, 2022, 26(4), 375-388. doi: 10.1080/14728222.2022.2061349 PMID: 35361044
- Lin, L.; Deangelis, S.; Foust, E.; Fuchs, J.; Li, C.; Li, P.K.; Schwartz, E.B.; Lesinski, G.B.; Benson, D.; Lu, J. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol. Cancer, 2010, 9, 217. doi: 10.1186/1476-4598-9-217
- Lin, L.; Hutzen, B.; Zuo, M.; Ball, S.; Deangelis, S.; Foust, E.; Pandit, B.; Ihnat, M.A.; Shenoy, S.S.; Kulp, S.; Li, P.K.; Li, C.; Fuchs, J.; Lin, J. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res., 2010, 70(6), 2445-2454. doi: 10.1158/0008-5472.CAN-09-2468 PMID: 20215512
- Jahangiri, A.; Dadmanesh, M.; Ghorban, K. STAT3 inhibition reduced PD‐L1 expression and enhanced antitumor immune responses. J. Cell. Physiol., 2020, 235(12), 9457-9463. doi: 10.1002/jcp.29750 PMID: 32401358
- Su, C.W.; Chuang, C.Y.; Chen, Y.T.; Yang, W.E.; Pan, Y.P.; Lin, C.W.; Yang, S.F. FLLL32 triggers caspase-mediated apoptotic cell death in human oral cancer cells by regulating the p38 pathway. Int. J. Mol. Sci., 2021, 22(21), 11860. doi: 10.3390/ijms222111860 PMID: 34769290
- Yadav, V.R.; Sahoo, K.; Awasthi, V. Preclinical evaluation of 4‐3,5‐bis(2‐chlorobenzylidene)‐4‐oxo‐piperidine‐1‐yl‐4‐oxo‐2‐butenoic acid, in a mouse model of lung cancer xenograft. Br. J. Pharmacol., 2013, 170(7), 1436-1448. doi: 10.1111/bph.12406 PMID: 24102070
- Yang, J.S.; Lin, R.C.; Hsieh, Y.H.; Wu, H.H.; Li, G.C.; Lin, Y.C.; Yang, S.F.; Lu, K.H. CLEFMA activates the extrinsic and intrinsic apoptotic processes through JNK1/2 and p38 pathways in human osteosarcoma cells. Molecules, 2019, 24(18), 3280. doi: 10.3390/molecules24183280 PMID: 31505816
- Chen, P.N.; Lin, C.W.; Yang, S.F.; Chang, Y.C. CLEFMA induces the apoptosis of oral squamous carcinoma cells through the regulation of the P38/HO-1 signalling pathway. Cancers, 2022, 14(22), 5519. doi: 10.3390/cancers14225519 PMID: 36428612
- Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control Release, 2019, 316, 359-380. doi: 10.1016/j.jconrel.2019.10.053
- Hinger, D.; Navarro, F.; Käch, A.; Thomann, J.S.; Mittler, F.; Couffin, A.C.; Maake, C. Photoinduced effects of m-tetrahydroxyphenylchlorin loaded lipid nanoemulsions on multicellular tumor spheroids. J. Nanobiotechnol., 2016, 14(1), 68. doi: 10.1186/s12951-016-0221-x PMID: 27604187
- Gonçalves, R.F.S.; Martins, J.T.; Abrunhosa, L.; Vicente, A.A.; Pinheiro, A.C. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: Effect of emulsifier type. Nanomaterials, 2021, 11(3), 815. doi: 10.3390/nano11030815 PMID: 33806777
- Akbari Dilmaghani, N.; Safaroghli-Azar, A.; Pourbagheri-Sigaroodi, A.; Bashash, D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life, 2021, 73(4), 618-642. doi: 10.1002/iub.2446 PMID: 33476088
- Harsha, C.; Banik, K.; Ang, H.L.; Girisa, S.; Vikkurthi, R.; Parama, D.; Rana, V.; Shabnam, B.; Khatoon, E.; Kumar, A.P.; Kunnumakkara, A.B. Targeting AKT/mTOR in oral cancer: Mechanisms and advances in clinical trials. Int. J. Mol. Sci., 2020, 21(9), 3285. doi: 10.3390/ijms21093285 PMID: 32384682
- Liu, W.; Wang, J.; Zhang, C.; Bao, Z.; Wu, L. Curcumin nanoemulsions inhibit oral squamous cell carcinoma cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation: A preliminary study. Oral Dis., 2022, 29(8), 3183-3192. doi: 10.1111/odi.14271 PMID: 35689522
- Gota, V.S.; Maru, G.B.; Soni, T.G.; Gandhi, T.R.; Kochar, N.; Agarwal, M.G. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem., 2010, 58(4), 2095-2099. doi: 10.1021/jf9024807 PMID: 20092313
- Setthacheewakul, S.; Mahattanadul, S.; Phadoongsombut, N.; Pichayakorn, W.; Wiwattanapatapee, R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur. J. Pharm. Biopharm., 2010, 76(3), 475-485. doi: 10.1016/j.ejpb.2010.07.011 PMID: 20659556
- Konwarh, R.; Saikia, J.P.; Karak, N.; Konwar, B.K. ‘Poly(ethylene glycol)-magnetic nanoparticles-curcumin’ trio: Directed morphogenesis and synergistic free-radical scavenging. Colloids Surf. B Biointerfaces, 2010, 81(2), 578-586. doi: 10.1016/j.colsurfb.2010.07.062 PMID: 20729041
- Lin, H.Y.; Thomas, J.L.; Chen, H.W.; Shen, C.M.; Yang, W.J.; Lee, M.H. In vitro suppression of oral squamous cell carcinoma growth by ultrasound-mediated delivery of curcumin microemulsions. Int. J. Nanomed., 2012, 7, 941-951. doi: 10.2147/IJN.S28510
- Guo, Y.; Wang, X.Y.; Chen, Y.L.; Liu, F.Q.; Tan, M.X.; Ao, M.; Yu, J.H.; Ran, H.T.; Wang, Z.X. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy. Acta Biomater., 2018, 80, 308-326. doi: 10.1016/j.actbio.2018.09.024
- Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. The performance of nanocarriers for transmucosal drug delivery. Expert Opin. Drug Deliv., 2006, 3(4), 463-478. doi: 10.1517/17425247.3.4.463 PMID: 16822222
- Arias, J. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules, 2008, 13(10), 2340-2369. doi: 10.3390/molecules13102340 PMID: 18830159
- Gao, Z.; Li, Z.; Yan, J.; Wang, P. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug. Des. Devel. Ther., 2017, 11, 2595-2604. doi: 10.2147/DDDT.S140797
- Safarzadeh, E.; Sandoghchian Shotorbani, S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull., 2014, 4(Suppl. 1), 421-427. doi: 10.5681/apb.2014.062 PMID: 25364657
- Zhang, R.X.; Wong, H.L.; Xue, H.Y.; Eoh, J.Y.; Wu, X.Y. Nanomedicine of synergistic drug combinations for cancer therapy : Strategies and perspectives. J. Control Release, 2016, 240, 489-503. doi: 10.1016/j.jconrel.2016.06.012
- Srivastava, S.; Mohammad, S.; Pant, A.B.; Mishra, P.R.; Pandey, G.; Gupta, S.; Farooqui, S. Co-delivery of 5-fluorouracil and curcumin nanohybrid formulations for improved chemotherapy against oral squamous cell carcinoma. J. Maxillofac. Oral Surg., 2018, 17(4), 597-610. doi: 10.1007/s12663-018-1126-z PMID: 30344406
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218. doi: 10.1208/s12248-012-9432-8 PMID: 23143785
- Kim, S.G.; Veena, M.S.; Basak, S.K.; Han, E.; Tajima, T.; Gjertson, D.W.; Starr, J.; Eidelman, O.; Pollard, H.B.; Srivastava, M.; Srivatsan, E.S.; Wang, M.B. Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: A pilot study. Clin. Cancer Res., 2011, 17(18), 5953-5961. doi: 10.1158/1078-0432.CCR-11-1272 PMID: 21821700
- Cohen, A.N.; Veena, M.S.; Srivatsan, E.S.; Wang, M.B. Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa beta kinase. Arch. Otolaryngol. Head Neck Surg., 2009, 135(2), 190-197. doi: 10.1001/archotol.135.2.190 PMID: 19221248
- Duarte, V.M.; Han, E.; Veena, M.S.; Salvado, A.; Suh, J.D.; Liang, L.J.; Faull, K.F.; Srivatsan, E.S.; Wang, M.B. Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKβ protein of the NFκB pathway. Mol. Cancer Ther., 2010, 9(10), 2665-2675. doi: 10.1158/1535-7163.MCT-10-0064 PMID: 20937593
- St John, M.A.; Li, Y.; Zhou, X.; Denny, P.; Ho, C.M.; Montemagno, C.; Shi, W.; Qi, F.; Wu, B.; Sinha, U.; Jordan, R.; Wolinsky, L.; Park, N.H.; Liu, H.; Abemayor, E.; Wong, D.T. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg., 2004, 130(8), 929-935. doi: 10.1001/archotol.130.8.929 PMID: 15313862
- Rhodus, N.L.; Ho, V.; Miller, C.S.; Myers, S.; Ondrey, F. NF-κB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma. Cancer Detect. Prev., 2005, 29(1), 42-45. doi: 10.1016/j.cdp.2004.10.003 PMID: 15734216
- Laura, V.; Mattia, F.; Roberta, G.; Federico, I.; Emi, D.; Chiara, T.; Luca, B.; Elena, C. Potential of curcumin in skin disorders. Nutrients, 2019, 11(9), 2169. doi: 10.3390/nu11092169 PMID: 31509968
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376. doi: 10.3390/nu11102376 PMID: 31590362
- Agrawal, D.K.; Mishra, P.K. Curcumin and its analogues: Potential anticancer agents. Med. Res. Rev., 2010, 30(5), 818-860. doi: 10.1002/med.20188 PMID: 20027668
- Sethiya, A.; Agarwal, D.K.; Agarwal, S. Current trends in drug delivery system of curcumin and its therapeutic applications. Mini Rev. Med. Chem., 2020, 20(13), 1190-1232. doi: 10.2174/1389557520666200429103647 PMID: 32348221
Дополнительные файлы
