Development and validation of method to predict pathology invasiveness in patients with a solitary pulmonary nodule

Мұқаба


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

AIM: To develop and validate a preoperative CT-based nomogram combined with radiomic and clinical–radiological signatures to distinguish preinvasive lesions from pulmonary invasive lesions.

MATERIALS AND METHODS: This was a retrospective, diagnostic study conducted from August 1, 2018, to May 1, 2020, at three centers. Patients with a solitary pulmonary nodule were enrolled in the GDPH center and were divided into two groups (7:3) randomly: development ( n =149) and internal validation ( n =54). The SYSMH center and the ZSLC Center formed an external validation cohort of 170 patients. The least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression analysis were used to feature signatures and transform them into models.

RESULTS: The study comprised 373 individuals from three independent centers (female: 225/373, 60.3%; median [IQR] age, 57.0 [48.0–65.0] years). The AUCs for the combined radiomic signature selected from the nodular area and the perinodular area were 0.93, 0.91, and 0.90 in the three cohorts. The nomogram combining the clinical and combined radiomic signatures could accurately predict interstitial invasion in patients with a solitary pulmonary nodule (AUC, 0.94, 0.90, 0.92) in the threeabilities, according to a decision curve analysis and the Akaike information criteria.

CONCLUSION: This study demonstrated that a nomogram constructed by identified clinical–radiological signatures and combined radiomic signatures has the potential to precisely predict pathology invasiveness.

This article is a translation of the article by Huang L, Lin W, Xie D, et al. Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study. Eur Radiol. 2022;32(3):1983–1996. doi: 10.1007/s00330-021-08268-z

This article is licensed under a Creative Commons Attribution 4.0 International License Creative Commons Attribution 4.0 ( https://creativecommons.org/licenses/by/4.0/) .

Толық мәтін

Рұқсат жабық

Авторлар туралы

Luyu Huang

Shantou University Medical College

Email: guibinqiao@126.com
ORCID iD: 0000-0002-5791-4781

MD

ҚХР, Guangzhou

Weihuan Lin

Shantou University Medical College

Email: guibinqiao@126.com
ORCID iD: 0000-0002-2982-3284

MD

ҚХР, Guangzhou

Daipeng Xie

Shantou University Medical College

Email: guibinqiao@126.com
ORCID iD: 0000-0003-1470-9945

MD

ҚХР, Guangzhou

Yunfang Yu

Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University; Beijing Normal University-Hong Kong Baptist University United International College

Email: guibinqiao@126.com
ORCID iD: 0000-0003-2579-6220

Associate Professor

ҚХР, Guangzhou; Zhuhai

Hanbo Cao

Zhoushan Hospital

Email: guibinqiao@126.com
ORCID iD: 0000-0001-9268-497X

MD

ҚХР, Zhoushan City, Zhejiang Province

Guoqing Liao

Shantou University Medical College

Email: guibinqiao@126.com
ORCID iD: 0000-0003-2593-4902

MD

ҚХР, Guangzhou

Shaowei Wu

Shantou University Medical College

Email: guibinqiao@126.com
ORCID iD: 0000-0002-8786-4375

Ph.D., Professor

ҚХР, Guangzhou

Lintong Yao

Shantou University Medical College

Email: guibinqiao@126.com
ORCID iD: 0009-0008-0382-5047

MD

ҚХР, Guangzhou

Zhaoyu Wang

Zhoushan Hospital

Email: guibinqiao@126.com

MD

ҚХР, Zhoushan City, Zhejiang Province

Mei Wang

Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences

Email: 281406196@gg.com
ҚХР, Guangzhou

Siyun Wang

Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences

Email: guibinqiao@126.com
ORCID iD: 0000-0001-7052-4430

MD

ҚХР, Guangzhou

Guangyi Wang

Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences

Email: wangguangyi@gdph.org.cn

MD

ҚХР, Guangzhou

Dongkun Zhang

Shantou University Medical College

Email: guibinqiao@126.com

MD

ҚХР, Guangzhou

Su Yao

Queen Elizabeth Hospital

Email: guibinqiao@126.com

MD

ҚХР, Hong Kong

Zifan He

Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: guibinqiao@126.com

MD

ҚХР, Guangzhou

William Cho

Queen Elizabeth Hospital

Email: williamcscho@gmail.com

MD, Ph.D.

ҚХР, Hong Kong

Duo Chen

Capital Medical University

Email: guibinqiao@126.com

MD

ҚХР, Beijing

Zhengjie Zhang

Shantou University Medical College

Email: guibinqiao@126.com

MD

ҚХР, Guangzhou

Wanshan Li

Yat-Sen University

Email: guibinqiao@126.com
ORCID iD: 0009-0007-2940-8033

MD

ҚХР, Guangzhou

Guibin Qiao

Shantou University Medical College

Хат алмасуға жауапты Автор.
Email: guibinqiao@126.com
ORCID iD: 0000-0001-9200-9317

MD

ҚХР, Guangzhou

Lawrence Chan

The Hong Kong Polytechnic University

Email: wing.chi.chan@polyu.edu.hk
ORCID iD: 0000-0002-2163-389X

MD

ҚХР, Hong Kong

Haiyu Zhou

Shantou University Medical College

Email: zhouhaiyu@gdph.org.cn
ORCID iD: 0000-0002-3328-6792

Ph.D. (Oncology)

ҚХР, Guangzhou

Әдебиет тізімі

  1. The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. doi: 10.1056/NEJMoa1102873
  2. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society. 2017. Radiology. 2017;284(1):228–243. doi: 10.1148/radiol.2017161659
  3. Callister MEJ, Baldwin DR, Akram AR, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE. Thorax. 2015;70(Suppl 2):ii1–ii54. doi: 10.1136/ thoraxjnl-2015-207168
  4. Mets OM, de Jong PA, Chung K, et al. Fleischner recommendations for the management of subsolid pulmonary nodules: high awareness but limited conformance – a survey study. Eur Radiol. 2016;26(11):3840–3849. doi: 10.1007/s00330-016-4249-y
  5. Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: International Multidisciplinary Classification of Lung Adenocarcinoma: executive summary. Proc Am Thorac Soc. 2011;8(5):381–385. doi: 10.1513/pats.201107-042ST
  6. Borczuk AC, Qian F, Kazeros A, et al. Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol. 2009;33(3):462–469. doi: 10.1097/PAS.0b013e3181 90157c
  7. Zhang J, Wu J, Tan Q, et al. Why do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classification. J Thorac Oncol. 2013;8(9):1196–1202. doi: 10.1097/JTO.0b013 e3182 9f09a7
  8. Ost D, Fein A. Evaluation and management of the solitary pulmonary nodule. Am J Respir Crit Care Med. 2000;162(3 Pt 1):782–787. doi: 10.1164/ajrccm.162.3 . 9812152
  9. Causey JL, Zhang J, Ma S, et al. Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci Rep. 2018;8(1):9286. doi: 10.1038/s41598-018-27569-w
  10. Chae D, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid groundglass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273(1):285–293. doi: 10.1148/radiol.14132187
  11. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127–157. doi: 10.3322/caac.21552
  12. Feng B, Chen X, Chen Y, et al. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol. 2020;30(12):6497–6507. doi: 10.1007/s00330-020-07024-z
  13. Chen S, Qin J, Ji X, et al. Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images. IEEE Trans Med Imaging. 2017;36(3):802–814. doi: 10.1109/TMI.2016.2629462
  14. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–446. doi: 10.1016/j.ejca.2011.11.036
  15. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
  16. Yang L, Yang J, Zhou X, et al. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Eur Radiol. 2019;29(5):2196–2206. doi: 10.1007/s00330-018-5770-y
  17. Song SH, Ahn JH, Lee HY, et al. Prognostic impact of nomogram based on whole tumour size, tumour disappearance ratio on CT and SUVmax on PET in lung adenocarcinoma. Eur Radiol. 2016;26(6):1538–1546. doi: 10.1007/s00330-015-4029-0
  18. Beig N, Khorrami M, Alilou M, et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology. 2019;290(3):783–792. doi: 10.1148/radiol.2018180910
  19. Banat GA, Tretyn A, Pullamsetti SS, et al. Immune and inflammatory cell composition of human lung cancer stroma. PLoS One. 2015;10(9):e0139073. doi: 10.1371/journal.pone.01390 73
  20. Nishino M. Perinodular radiomic features to assess nodule microenvironment: does it help to distinguish malignant versus benign lung nodules? Radiology. 2019;290(3):793–795. doi: 10.1148/radiol.2018182619
  21. Christiansen A, Detmar M. Lymphangiogenesis and cancer. Genes Cancer. 2011;2(12):1146–1158. doi: 10 . 1177/19476 01911 423028
  22. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–e107. doi: 10.1158/0008-5472.CAN-17-0339
  23. Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung Cancer Staging Project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51. doi: 10.1016/j.jtho.2015.09.009
  24. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G, editors. Selected papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics); Springer, New York, NY; 1998. doi: 10.1007/978-1-4612-1694-0_15
  25. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26(6):565–574. doi: 10.1177/0272989X06295361
  26. Luo T, Xu K, Zhang Z, et al. Radiomic features from computed tomography to differentiate invasive pulmonary adenocarcinomas from non-invasive pulmonary adenocarcinomas appearing as part-solid ground-glass nodules. Chin J Cancer Res. 2019;31(2):329–338. doi: 10.21147/j.issn.1000-9604.2019.02.07
  27. Lee SM, Park C.M, Goo JM, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology. 2013;268(1):265–273. doi: 10.1148/radiol.13120949
  28. Li W, Wang X, Zhang Y, et al. Radiomic analysis of pulmonary ground-glass opacity nodules for distinction of preinvasive lesions, invasive pulmonary adenocarcinoma and minimally invasive adenocarcinoma based on quantitative texture analysis of CT. Chin J Cancer Res. 2018;30(4):415–424. doi: 10.21147/j.issn.1000-9604.2018.04.04
  29. Tunali I, Hall LO, Napel S, et al. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Med Phys. 2019;46(11):5075–5085. doi: 10.1002/mp.13808
  30. She Y, Zhang L, Zhu H, et al. The predictive value of CTbased radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules. Eur Radiol. 2018;28(12):5121–5128. doi: 10.1007/s00330-018-5509-9
  31. Wu L, Gao C, Xiang P, et al. CT-imaging based analysis of invasive lung adenocarcinoma presenting as ground glass nodules using peri- and intra-nodular radiomic features. Front Oncol. 2020;10:838. doi: 10.3389/fonc.2020.00838
  32. Naito M, Aokage K, Saruwatari K, et al. Microenvironmental changes in the progression from adenocarcinoma in situ to minimally invasive adenocarcinoma and invasive lepidic predominant adenocarcinoma of the lung. Lung Cancer. 2016;100:53–62. doi: 10.1016/j.lungcan.2016.07.024
  33. Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002;12(3):197–207. doi: 10.1016/S1044-579X(02)00023-8
  34. Moriya Y, Niki T, Yamada T, et al. Increased expression of laminin-5 and its prognostic significance in lung adenocarcinomas of small size: an immunohistochemical analysis of 102 cases. Cancer. 2001;91(6):1129–1141. doi: 10. 1002/1097-0142(20010315)91:6<1129::aid-cncr1109>3.0.co;2-c
  35. Zhang C, Zhang J, Xu FP, et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma. J Thorac Oncol. 2019;14(11):1912–1923. doi: 10.1016/j.jtho.2019.07.031
  36. Yim J, Zhu LC, Chiriboga L, et al. Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol. 2007;20(2):233–241. doi: 10.1038/modpathol.3800734
  37. Nakanishi H, Matsumoto S, Iwakawa R, et al. Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas. Cancer Res. 2009;69(4):1615–1623. doi: 10.1158/0008-5472.CAN-08-3218
  38. Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. 2017;19(1):1–14. doi: 10.1186/s13058-017-0846-1
  39. Braman N, Prasanna P, Whitney J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2) – positive breast cancer. JAMA Netw Open. 2019;2(4):e192561. doi: 10.1001/jamanetworkopen.2019.2561
  40. Wang X, Zhao X, Li Q, et al. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Eur Radiol. 2019;29(11):6049–6058. doi: 10.1007/s00330-019-06084-0
  41. Levman JED, Martel AL. A margin sharpness measurement for the diagnosis of breast cancer from magnetic resonance imaging examinations. Acad Radiol. 2011;18(12):1577–1581. doi: 10.1016/j.acra.2011.08.004
  42. Uthoff J, Stephens MJ, Newell JD, et al. Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Med Phys. 2019;46(7):3207–3216. doi: 10.1002/mp.13592
  43. Wu G, Woodruff HC, Shen J, et al. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study. Radiology. 2020;297(2):451–458. doi: 10.1148/radiol.2020192431
  44. Ferreira JR, Oliveira MC, de Azevedo-Marques PM. Characterization of pulmonary nodules based on features of margin sharpness and texture. J Digit Imaging. 2018;31(4):451–463. doi: 10.1007/s10278-017-0029-8

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Appendix.
Жүктеу (1MB)
3. Fig. 1. Patient recruitment process at three centers. Note. GDPH — Guangdong Provincial people’ s Hospital; SYSMH — Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University; ZSLC — Zhoushan Lung Cancer Institution; КТ — computed tomography; ПИП — pre-invasive lesions; ИП — invasion lesions; RS-C, combined radiomic signature selected from the nodular area and perinodular area.

Жүктеу (423KB)
4. Fig. 2. Overall radiomic workflow and pipeline in this study. a — CT image (transverse section) in a 58-year-old male patient with a 1.5-cm solitary pulmonary nodule in the right upper lung (dotted box) on contrast-enhanced CT and biopsy confirmed as lung adenocarcinoma. b — two regions of interest (ROIs) were constructed into volumes of interests (VOIs), and radiomic features were extracted from two VOIs. c — radiomic features were selected by the LASSO algorithm and constructed into a radiomic signature. d — discrimination and calibration of the nomogram which was formed by the clinical–radiological and combined radiomic signatures.

Жүктеу (422KB)
5. Fig. 3. Nomogram based on the radiomic and clinical–radiological signatures. The nomogram based on RS-C and the clinical–radiological signature to predict pathology invasiveness. RS-C — combined radiomic signature selected from the nodular area and perinodular area, C-R — clinical–radiological.

Жүктеу (107KB)
6. Fig. 4. ROC curves of the nomogram and models in the development and validation cohorts. a — ROC curves of the nomogram in the development and validation cohorts; b — ROC curves of five models in the development cohort; c — ROC curves of five models in the internal validation cohorts; d — ROC curves of five models in the external validation cohorts. ROC, receiver operating characteristic; RS1 — radiomic signature selected from the nodular area; RS2 — radiomic signature selected from the perinodular area; RS-C, combined radiomic signatures selected from the nodular area and perinodular area; C-R, clinical–radiological.

Жүктеу (452KB)
7. Fig. 5. Decision curve analysis for the nomogram and signatures in the development and validation cohorts. Decision curve analysis for the nomogram and signatures in the development ( a ), internal ( b ), and external ( c ) validation cohorts. DCA, decision curve analysis; RS-C — combined radiomic signature selected from the nodular area and perinodular area; C-R — clinical–radiological.

Жүктеу (347KB)

© Huang L., Lin W., Xie D., Yu Y., Cao H., Liao G., Wu S., Yao L., Wang Z., Wang M., Wang S., Wang G., Zhang D., Yao S., He Z., Cho W.C., Chen D., Zhang Z., Li W., Qiao G., Chan L.W., Zhou H., 2024

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ:  ПИ № ФС 77 - 86785 от 05.02.2024 (ранее — ПИ № ФС 77 - 59057 от 22.08.2014).