Том 25, № 4 (2025)
- Год: 2025
- Статей: 5
- URL: https://kld-journal.fedlab.ru/1871-5206/issue/view/14217
Oncology
Emerging Claudin18.2-targeting Therapy for Systemic Treatment of Gastric Cancer: Seeking Nobility Amidst Danger
Аннотация
Gastric cancer in advanced stages lacked effective treatment options. claudin18.2 (CLDN18.2) is a membrane protein that is crucial for close junctions in the differentiated epithelial cells of the gastric mucosa, playing a vital role in barrier function, and can be hardly recognized by immune cells due to its polarity pattern. As the polarity of gastric tumor cells changes, claudin18.2 is exposed on the cell surface, resulting in immune system recognition, and making it an ideal target. In this review, we summarized the expression regulation mechanism of claudin18.2 both in normal cells and malignant tumor cells. Besides, we analyzed the available clinical results and potential areas for future research on claudin18.2-positive gastric cancer and claudin18.2-targeting therapy. In conclusion, claudin18.2 is an ideal target for gastric cancer treatment, and the claudin18.2-targeting therapy has changed the treatment pattern of gastric cancer.
223-231
Doramectin Induces Apoptosis in B16 Melanoma Cells
Аннотация
Introduction/Objective:Metastatic melanoma resists current pharmacological regimens that act through apoptosis. This indicates that therapies acting via non-apoptotic cell-death pathways could be pursued. Doramectin has shown promising results in another cancer of neural crest origin, neuroblastoma, through the inhibition of growth via autophagy. Our research hypothesis is that doramectin induces autophagy in B16F10 melanoma cells.
Methods:Cells were treated with doramectin (15 uM) or a combination of both doramectin and a cell-death inhibitor, compared to untreated control cells (media), and then analyzed with MTT analysis. Likewise, MDC analysis was completed to detect autophagy involvement with doramectin treatment. Flow cytometry and TUNEL Assay were conducted to observe cell death-related effects.
Results:MTT analysis of doramectin-treated cells displayed a decrease in cell growth compared to control. Apoptotic morphology was prominent in melanoma cells treated with doramectin. Increased autophagy was not detected by fluorometric microscopic analysis. Flow cytometry analysis of doramectin-treated cells showed apoptosis as a major mode of cell death with some necrosis.
Conclusion:Doramectin induces a novel cell-death mechanism in melanoma compared to other forms of cancer and should be studied as an effective anti-cancer agent for melanoma treatment.
244-256
PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes
Аннотация
Background:Prostate cancer (PC) is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide (TiO2) can improve treatment outcomes and increase the effectiveness of anticancer drugs.
Objective:This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the PC cell line by attaching them to PEGylated TiO2 nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.
Methods:Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated TiO2 system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.
Results:The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.
Conclusion:Accordingly, it was predicted that the PEGylated TiO2 nano-based carrier could be effective in PC.
257-271
Novel Quinoline Nitrate Derivatives: Synthesis, Characterization, and Evaluation of their Anticancer Activity with a Focus on Molecular Docking and NO Release
Аннотация
Background:Nitric Oxide (NO) has recently gained recognition as a promising approach in the field of cancer therapy. The quinoline scaffold is pivotal in cancer drug research and is known for its versatility and diverse mechanisms of action.
Objective:This study presents the synthesis, characterization, and evaluation of novel quinoline nitrate derivatives as potential anticancer agents.
Methods:The compounds were synthesized through a multi-step process involving the preparation of substituted 1-(2-aminophenyl) ethan-1-one, followed by the synthesis of substituted 2- (chloromethyl)-3,4-dimethylquinolines, and finally, the formation of substituted (3,4- dimethylquinolin-2-yl) methyl nitrate derivatives. The synthesized compounds were characterized using various spectroscopic techniques. Molecular docking studies were conducted to assess the binding affinity of the compounds to the EGFR tyrosine kinase domain.
Results:The docking scores revealed varying degrees of binding affinity, with compound 6k exhibiting the highest score. The results suggested a correlation between molecular docking scores and anticancer activity. Further evaluations included MTT assays to determine the cytotoxicity of the compounds against Non-Small Cell Lung Cancer (A-549) and pancreatic cancer (PANC-1) cell lines. Compounds with electron-donating groups displayed notable anticancer potential, and there was a correlation between NO release and anticancer activity. The study also investigated nitric oxide release from the compounds, revealing compound 6g as the highest NO releaser.
Conclusion:The synthesized quinoline nitrate derivatives showed promising anticancer activity, with compound 6g standing out as a potential lead compound. The correlation between molecular docking, NO release, and anticancer activity suggests the importance of specific structural features in the design of effective anticancer agents.
272-280
MG132-mediated Suppression of the Ubiquitin-proteasome Pathway Enhances the Sensitivity of Endometrial Cancer Cells to Cisplatin
Аннотация
Result:MG132 exposure significantly reduced cell viability in a dose-dependent manner. It augmented cisplatin- induced proliferation inhibition and enhanced apoptosis, correlating with caspase-3 activation and ROS upregulation. Molecular analysis revealed a profound inhibition of the ubiquitin-proteasome system. MG132 also significantly increased the expression of cisplatin-induced pro-inflammatory cytokines, suggesting a transition from chronic to acute inflammation.
Background:Tumor cell resistance to cisplatin is a common challenge in endometrial cancer chemotherapy, stemming from various mechanisms. Targeted therapies using proteasome inhibitors, such as MG132, have been investigated to enhance cisplatin sensitivity, potentially offering a novel treatment approach.
Objective:The aim of this study was to investigate the effects of MG132 on cisplatin sensitivity in the human endometrial cancer (EC) cell line RL95-2, focusing on cell proliferation, apoptosis, and cell signaling.
Methods:Human endometrial cancer RL95-2 cells were exposed to MG132, and cell viability was assessed in a dose-dependent manner. The study evaluated the effect of MG132 on cisplatin-induced proliferation inhibition and apoptosis, correlating with caspase-3 activation and reactive oxygen species (ROS) upregulation. Additionally, we examined the inhibition of the ubiquitin-proteasome system and the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and IL-13 during MG132 and cisplatin co-administration.
Results:Human endometrial cancer RL95-2 cells were exposed to MG132, and cell viability was assessed in a dose-dependent manner. The study evaluated the effect of MG132 on cisplatin-induced proliferation inhibition and apoptosis, correlating with caspase-3 activation and reactive oxygen species (ROS) upregulation. Additionally, we examined the inhibition of the ubiquitin-proteasome system and the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and IL-13 during MG132 and cisplatin co-administration.
Conclusion:MG132 enhances the therapeutic efficacy of cisplatin in human EC cells by suppressing the ubiquitin- proteasome pathway, reducing cell viability, enhancing apoptosis, and shifting the inflammatory response. These findings highlighted the potential of MG132 as an adjuvant in endometrial cancer chemotherapy. Further research is needed to explore detailed mechanisms and clinical applications of this combination therapy.
281-291



