Квантово-химическое исследование получения 1-виниладамантана в результате ионного алкилирования адамантана этиленом

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Рассмотрен многостадийный процесс образования виниладамантана ионным алкилированием адамантана этиленом при использовании хлорида алюминия в качестве катализатора. Особенность ионного алкилирования адамантана олефинами заключается в образовании непредельных производных наряду с предельными. Квантово-химическими методами исследованы кинетические и термодинамические параметры соответствующих элементарных актов химических реакций, проведен сравнительный анализ особенностей реакции получения непредельных производных адамантана ионным алкилированием этиленом по сравнению с алкилированием пропиленом.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Н. Баранов

Российский университет дружбы народов

Хат алмасуға жауапты Автор.
Email: 1042182094@rudn.ru
Ресей, Москва

Е. Багрий

Институт нефтехимического синтеза имени А.В. Топчиева РАН

Email: 1042182094@rudn.ru
Ресей, Москва

Р. Сафир

Российский университет дружбы народов

Email: 1042182094@rudn.ru
Ресей, Москва

А. Чередниченко

Российский университет дружбы народов

Email: 1042182094@rudn.ru
Ресей, Москва

К. Боженко

Российский университет дружбы народов

Email: 1042182094@rudn.ru
Ресей, Москва

А. Максимов

Институт нефтехимического синтеза имени А.В. Топчиева

Email: 1042182094@rudn.ru
Ресей, Москва

Әдебиет тізімі

  1. Ishizone T., Goseki R. // Polym. J. 2018. V. 50. P. 805. https://doi.org/10.1038/s41428-018-0081-3.
  2. Muthyala R.S., Sheng S., Carlson K.E. et al. // J. Med. Chem. 2003. V. 46. P. 1589. https://doi.org/10.1021/jm0204800.
  3. Min J., Guillen V.S., Sharma A. et al. // Ibid. 2017. V. 60. P. 6321. https://doi.org/10.1021/acs.jmedchem.7b00585.
  4. Miyashita K., Minagawa M., Ueda Y. et al. // Tetrahedron. 2001. V. 57. P. 3361. https://doi.org/10.1016/S0040-4020(01)00216-2.
  5. Robello D.R. // J. Appl. Polym. Sci. 2012. V. 127. P. 96. https://doi.org/10.1002/app.37802.
  6. Xie J., Liu Y., Jia T. et al. // Energy & Fuels. 2020. V. 34. P. 4516. https://doi.org/10.1021/acs.energyfuels.0c00442.
  7. Tyborski C., Gillen R., Fokin A.A. et al. // J. Phys. Chem. C. 2017. V. 121. P. 27082. https://doi.org/10.1021/acs.jpcc.7b07666.
  8. Багрий Е.И. Адамантаны: получение, свойства, применение. М.: Наука, 1989. 264 c.
  9. Багрий Е.И., Соловьев В.Н., Носакова С.М. и др. Способ получения виниладамантанов: А. с. 789472. 1980. СССР.
  10. Wright J.A., Gaunt M.J., Spencer J.B. // Chemistry – A European Journal. 2006. V. 12. P. 949. https://doi.org/10.1002/chem.200400644.
  11. Trofimov B.A., Schmidt E.Yu., Zorina N.V. et al. // Tetrahedron Lett. 2008. V. 49. P. 4362. https://doi.org/10.1016/j.tetlet.2008.05.023.
  12. Fokin A.A., Butova E.D., Barabash A.V. et al. // Synth. Commun. 2013. V. 43. P. 1772. https://doi.org/10.1080/00397911.2012.667491.
  13. Demidov M.R., Osipov D.V., Korol’kov K.A. et al. // Advanced Synthesis and Catalysis. 2021. V. 363. P. 3737. https://doi.org/10.1002/adsc.202100261.
  14. Weigel W.K., III, Dang H.T., Feceu A. et al. // Org. Biomol. Chem. 2022. V. 20. P. 10. https://doi.org/10.1039/D1OB01916C.
  15. Баранов Н.И., Багрий Е.И., Сафир Р.Е. и др. // Нефтехимия. 2022. Т. 62. С. 181. https://doi.org/10.31857/S0028242122020022. [Baranov N.I., Bagrii E.I., Safir R.E. et al. // Pet. Chem. V. 62. P. 352. https://doi.org/10.1134/S0965544122020153]
  16. Багрий Е.И., Борисов Ю.А., Колбановский Ю.А. и др. // Там же. 2019. Т. 59. С. 64. https://doi.org/10.1134/S0028242119010064. [Bagrii E.I., Borisov Y.A., Kolbanovskii Y.A. et al. // Ibid. 2019. V. 59. P. 66. https://doi.org/10.1134/S0965544119010067]
  17. Баранов Н.И., Сафир Р.Е., Багрий Е.И. и др. // Там же. 2020. Т. 60. С. 644. https://doi.org/10.31857/S0028242120050044. [Baranov N.I., Safir R.E., Bagrii E.I. et al. // Ibid. 2020. V. 60. P. 1033. https://doi.org/10.1134/S0965544120090042]
  18. Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. P. 154102. https://doi.org/10.1063/5.0005188.
  19. Shamov G.A., Budzelaar P.H.M., Schreckenbach G. // J. Chem. Theory Comput. 2010. V. 6. P. 477. https://doi.org/10.1021/ct9005135.
  20. Chemcraft – графическая программа для визуализации квантово-химических расчетов. https://www.chemcraftprog.com (дата обращения 13.07.2022).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geometrical structure of 1-vinyladamantane. Distances are given in angstroms (Å).

Жүктеу (255KB)
3. Fig. 2. Dependence of the potential energy change (PC) of the reaction Ad+ + C2H4 → Ad+ - C2H4. The scanning step is 0.1 Å.

Жүктеу (52KB)
4. Fig. 3. Geometrical structure of the Ad+ - C2H4 complex. Distances are given in angstroms (Å).

Жүктеу (247KB)
5. Fig. 4. Geometrical structure of Ad-CH2-CH2-AlCl4. Distances are given in angstroms (Å).

Жүктеу (225KB)
6. Fig. 5. Geometrical structure of the transition state of the reaction Ad-CH+-CH3 - AlCl4- → Ad-CH=CH2 + AlCl3 - HCl. Distances are given in angstroms (Å).

Жүктеу (245KB)
7. Fig. 6. Geometrical structure of the reactants of the reaction Ad-CH+-CH3 - AlCl4- → Ad-CH=CH2 + AlCl3 - HCl. Distances are given in angstroms (Å).

Жүктеу (257KB)
8. Fig. 7. Geometrical structure of Ad-CH2-CH2-AlCl4‘’. Distances are given in angstroms (Å).

Жүктеу (246KB)
9. Fig. 8. Geometrical structure of Ad-CH2-CH2-AlCl4'. Distances are given in angstroms (Å).

Жүктеу (220KB)

© Russian Academy of Sciences, 2024